Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 55:9c0a5e28a572
regurality elimination case
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 May 2019 23:45:56 +0900 |
parents | 33fb8228ace9 |
children | aad8cdce8845 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 22 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Mon May 27 21:58:17 2019 +0900 +++ b/ordinal-definable.agda Mon May 27 23:45:56 2019 +0900 @@ -297,7 +297,7 @@ ; regularity = regularity ; infinity∅ = {!!} ; infinity = {!!} - ; selection = selection + ; selection = λ {ψ} {X} {y} → selection {ψ} {X} {y} ; replacement = {!!} } where open _∧_ @@ -332,24 +332,32 @@ proj2 ( regularity x non ) = reg1 where reg2 : {y : Ordinal} → ( def (minimul x non) y ∧ (minimul x non ∋ ord→od y) ∧ (x ∋ ord→od y) ) → ⊥ reg2 {y} t with proj1 t | proj1 (proj2 t) | proj2 (proj2 t) - ... | p1 | p2 | p3 = ? + ... | p1 | p2 | p3 = {!!} reg0 : {y : Ordinal {suc n}} → Minimumo (od→ord x) → def (Select (minimul x non) (λ z → (minimul x non ∋ z) ∧ (x ∋ z))) y → def od∅ y reg0 {y} m t with trio< y (mino (minord x non)) reg0 {y} m t | tri< a ¬b ¬c with reg2 {y} ( record { proj1 = (def-subst {suc n} {minimul x non} (o<→c< a) refl diso ) - ; proj2 = record { proj1 = {!!} - ; proj2 = {!!} - }} ) + ; proj2 = record { proj1 = proj1 (proj2 t ) + ; proj2 = proj2 (proj2 t ) + }} ) ... | () - reg0 {y} m t | tri≈ ¬a refl ¬c = lemma y ( mino (minord x non) ) {!!} where - lemma : ( ox oy : Ordinal {suc n} ) → ord→od ox c< ord→od oy → Lift (suc n) ⊥ - lemma ox oy lt = lift ( o≡→¬c< {suc n} refl lt ) - -- o≡→¬c< {suc n} refl ( c<→o< {suc n} {ord→od y} {ord→od (od→ord (minimul x non))} (proj1 t) ) - reg0 {y} m t | tri> ¬a ¬b c = lemma y ( mino (minord x non) ) {!!} {!!} where - lemma : ( ox oy : Ordinal {suc n} ) → ox o< oy → ord→od oy c< ord→od ox → Lift (suc n) ⊥ - lemma ox oy (case1 x) yc<x = {!!} - lemma ox oy (case2 lt) yc<x with d<→lv lt - ... | refl = lift ( o<→¬c> {suc n} (case2 {!!}) yc<x ) + reg0 {y} m t | tri≈ ¬a refl ¬c = lemma y ( mino (minord x non) ) refl + (def-subst {suc n} {ord→od y} {mino (minord x non)} (proj1 t) refl (sym diso)) + where + lemma : ( ox oy : Ordinal {suc n} ) → ox ≡ oy → ord→od ox c< ord→od oy → Lift (suc n) ⊥ + lemma ox oy refl lt = lift ( o≡→¬c< {suc n} {ord→od oy} {ord→od oy} refl lt ) + reg0 {y} m t | tri> ¬a ¬b c with o<> y (mino (minord x non)) (lemma (proj1 t)) c where + lemma : def (ord→od (mino (ominimal (od→ord x) (∅5 (od→ord x) (λ eq → non (∅7 eq)))))) y → y o< mino (minord x non) + lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord x non))} + (def-subst {suc n} {ord→od (mino (minord x non))} {y} d refl (sym diso)) + lemma d | clt = o<-subst clt ord-iso ord-iso + ... | () reg1 : Select (minimul x non) (λ x₁ → (minimul x non ∋ x₁) ∧ (x ∋ x₁)) == od∅ reg1 = record { eq→ = reg0 (minord x non) ; eq← = λ () } + +-- (o<-subst {suc n} {y} (c<→o< {suc n} (def-subst {suc n} (proj1 t ) {!!} {!!} )) {!!} {!!} ) +-- c<> {n} (o<→c< {suc n} {mino (minord x non)} {y} (case2 lto)) +-- (def-subst {suc n} {ord→od (mino (minord x non))} {y} lt refl refl ) -- lemma y ( mino (minord x non) ) +-- (def-subst {suc n} {ord→od y} {mino (minord x non)} (proj1 t) refl (sym diso)) +-- {!!} where