Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 798:9cf74877efab
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Aug 2022 18:24:53 +0900 |
parents | 3a8493e6cd67 |
children | c8a166abcae0 |
files | src/zorn.agda |
diffstat | 1 files changed, 32 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Aug 06 15:06:58 2022 +0900 +++ b/src/zorn.agda Sat Aug 06 18:24:53 2022 +0900 @@ -228,33 +228,52 @@ supf-is-sup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ & (SUP.sup (sup x≤z) ) csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) supf≤x :{x : Ordinal } → z o≤ x → supf z ≡ supf x + + fcy<sup : {u w : Ordinal } → u o< z → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf + fcy<sup {u} {w} u<z fc with SUP.x<sup (sup (o<→≤ u<z)) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) + , ch-init (subst (λ k → FClosure A f y k) (sym &iso) fc ) ⟫ + ... | case1 eq = case1 (subst (λ k → k ≡ supf u ) &iso (trans (cong (&) eq) (sym (supf-is-sup (o<→≤ u<z) ) ) )) + ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup (o<→≤ u<z) ))) ) lt ) + supf-mono : {x y : Ordinal } → x o< y → supf x o≤ supf y - supf-mono {x} {y} x<y = ? where + supf-mono {x} {y} x<y = sf<sy where + -- supf x << supf y → supf x o< supf y + -- x o< y → supf x <= supf y -- z o≤ x → supf x ≡ supf y ≡ supf z -- x o< z → z o< y → supf x ≡ supf y ≡ supf z sf<sy : supf x o≤ supf y sf<sy with trio< x z ... | tri> ¬a ¬b c = o≤-refl0 (( trans (sym (supf≤x (o<→≤ c))) (supf≤x (ordtrans (ordtrans c x<y ) <-osuc ) ) )) ... | tri≈ ¬a b ¬c = o≤-refl0 (trans (sym (supf≤x (o≤-refl0 (sym b)))) (supf≤x (subst (λ k → k o< osuc y) b (o<→≤ x<y)))) - ... | tri< x<z ¬b ¬c with trio< y z - ... | tri> ¬a ¬b c = ? + ... | tri< x<z ¬b ¬c with trio< (supf x) (supf y) + ... | tri< a ¬b ¬c = o<→≤ a + ... | tri≈ ¬a b ¬c = o≤-refl0 b + ... | tri> ¬a ¬b sy<sx with trio< z y + ... | tri< a ¬b ¬c = ? ... | tri≈ ¬a b ¬c = ? - ... | tri< y<z ¬b ¬c with csupf (o<→≤ x<z) | csupf (o<→≤ y<z) - ... | ⟪ ax , ch-init fcx ⟫ | ⟪ ay , ch-init fcy ⟫ = ? - ... | ⟪ ax , ch-is-sup ux ux≤z is-sup-x fcx ⟫ | ⟪ ay , ch-init fcy ⟫ = ? - ... | ⟪ ax , ch-init fcx ⟫ | ⟪ ay , ch-is-sup uy uy≤z is-sup-y fcy ⟫ = ? - ... | ⟪ ax , ch-is-sup ux ux≤z is-sup-x fcx ⟫ | ⟪ ay , ch-is-sup uy uy≤z is-sup-y fcy ⟫ = ? + ... | tri> ¬a ¬b y<z = ? + zc04 : x o< z → y o< z → supf x o≤ supf y + zc04 x<z y<z with csupf (o<→≤ x<z) | csupf (o<→≤ y<z) + ... | ⟪ ax , ch-init fcx ⟫ | ⟪ ay , ch-init fcy ⟫ with fcy<sup x<z fcy + ... | case1 eq = o≤-refl0 (sym eq) + ... | case2 lt with fcy<sup y<z fcx + ... | case1 eq = o≤-refl0 eq + ... | case2 lt1 = ⊥-elim ( <-irr (case2 lt) lt1 ) + zc04 x<z y<z | ⟪ ax , ch-is-sup ux ux≤z is-sup-x fcx ⟫ | ⟪ ay , ch-init fcy ⟫ with fcy<sup x<z fcy + ... | case1 eq = o≤-refl0 (sym eq) + ... | case2 lt with ChainP.fcy<sup is-sup-x fcy + ... | case1 eq with s≤fc (supf ux) f mf fcx + ... | case1 eq1 = o≤-refl0 ( trans ( subst₂ (λ j k → j ≡ k ) &iso &iso (sym (cong (&) eq1))) (sym eq) ) + ... | case2 lt1 = ? -- ux << sx, sy << sx + zc04 x<z y<z | ⟪ ax , ch-is-sup ux ux≤z is-sup-x fcx ⟫ | ⟪ ay , ch-init fcy ⟫ | case2 lt1 = ? -- sy << sx + zc04 x<z y<z | ⟪ ax , ch-init fcx ⟫ | ⟪ ay , ch-is-sup uy uy≤z is-sup-y fcy ⟫ = ? + zc04 x<z y<z | ⟪ ax , ch-is-sup ux ux≤z is-sup-x fcx ⟫ | ⟪ ay , ch-is-sup uy uy≤z is-sup-y fcy ⟫ = ? -- ... | tri< a ¬b ¬c = csupf (o<→≤ a) -- ... | tri≈ ¬a b ¬c = csupf (o≤-refl0 b) -- ... | tri> ¬a ¬b c = subst (λ k → odef (UnionCF A f mf ay supf x) k ) ? (csupf ? ) -- csy : odef (UnionCF A f mf ay supf y) (supf y) -- csy = csupf ? - fcy<sup : {u w : Ordinal } → u o< z → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf - fcy<sup {u} {w} u<z fc with SUP.x<sup (sup (o<→≤ u<z)) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) - , ch-init (subst (λ k → FClosure A f y k) (sym &iso) fc ) ⟫ - ... | case1 eq = case1 (subst (λ k → k ≡ supf u ) &iso (trans (cong (&) eq) (sym (supf-is-sup (o<→≤ u<z) ) ) )) - ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup (o<→≤ u<z) ))) ) lt ) order : {b s z1 : Ordinal} → b o< z → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) order {b} {s} {z1} b<z sf<sb fc = zc04 where zc01 : {z1 : Ordinal } → FClosure A f (supf s) z1 → UnionCF A f mf ay supf b ∋ * z1