Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 805:9d97134d0a93
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 Aug 2022 09:02:51 +0900 |
parents | 2d84411a636e |
children | 473825abd767 |
files | src/zorn.agda |
diffstat | 1 files changed, 35 insertions(+), 47 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Aug 11 14:07:57 2022 +0900 +++ b/src/zorn.agda Fri Aug 12 09:02:51 2022 +0900 @@ -692,62 +692,40 @@ -- if previous chain satisfies maximality, we caan reuse it -- -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x - no-extension : ¬ sp1 ≡ supf1 x → ZChain A f mf ay x - no-extension ¬sp=x = record { supf = supf1 ; sup = sup - ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = {!!} ; csupf = csupf - ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where - UnionCF⊆ : {z : Ordinal } → z o≤ x → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay supf0 x - UnionCF⊆ {z} z≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ - UnionCF⊆ {z} z≤x ⟪ au , ch-is-sup u1 u1≤z record { fcy<sup = fc<s ; order = o1 ; supu=u = sp=u } (init au1 refl) ⟫ = zc30 where - zc30 : odef (UnionCF A f mf ay supf0 x) (supf1 u1 ) - zc30 with trio< u1 px - ... | tri< a ¬b ¬c = ⟪ au , ch-is-sup u1 (OrdTrans u1≤z z≤x) ? (init au1 refl) ⟫ - ... | tri≈ ¬a b ¬c = ⟪ au , ch-is-sup u1 (OrdTrans u1≤z z≤x) ? (init au1 refl) ⟫ - ... | tri> ¬a ¬b px<u1 = ? where - zc31 : u1 ≡ x - zc31 with trio< u1 x - ... | tri< a ¬b ¬c = ⊥-elim (¬p<x<op ⟪ px<u1 , subst (λ k → u1 o< k) (sym (Oprev.oprev=x op)) a ⟫ ) - ... | tri≈ ¬a b ¬c = b - ... | tri> ¬a ¬b c = ⊥-elim (¬p<x<op ⟪ c , ordtrans≤-< u1≤z z≤x ⟫ ) - UnionCF⊆ {z} z≤x ⟪ au , ch-is-sup u1 u1≤z u1-is-sup (fsuc xp fcu1) ⟫ with - UnionCF⊆ {z} z≤x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤z u1-is-sup fcu1 ⟫ - ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ - ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ - UnionCF⊆R : {z : Ordinal } → z o≤ x → UnionCF A f mf ay supf0 z ⊆' UnionCF A f mf ay supf1 x - UnionCF⊆R {z} z≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ - UnionCF⊆R {z} z≤x ⟪ au , ch-is-sup u1 u1≤z u1-is-sup (init au1 refl) ⟫ - = ⟪ au , ch-is-sup u1 (OrdTrans u1≤z z≤x) ? (init ? ?) ⟫ - UnionCF⊆R {z} z≤x ⟪ au , ch-is-sup u1 u1≤z u1-is-sup (fsuc xp fcu1) ⟫ with - UnionCF⊆R {z} z≤x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤z u1-is-sup fcu1 ⟫ - ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ - ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ - sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) + + record xSUP : Set n where + field + ax : odef A x + not-sup : IsSup A (UnionCF A f mf ay supf0 x) ax + + no-extension : ¬ xSUP → ZChain A f mf ay x + no-extension ¬sp=x = record { supf = supf0 ; sup = sup + ; initial = pinit ; chain∋init = pcy ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf + ; chain⊆A = λ lt → proj1 lt ; f-next = pnext ; f-total = ptotal } where + sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf0 z) sup {z} z≤x with trio< z px - ... | tri< a ¬b ¬c = SUP⊆ (UnionCF⊆ ? ) (ZChain.sup zc ? ) - ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCF⊆ ? ) (ZChain.sup zc ? ) - ... | tri> ¬a ¬b c = SUP⊆ (λ lt → chain-mono f mf ay _ ? (UnionCF⊆ ? lt )) sup1 + ... | tri< a ¬b ¬c = ZChain.sup zc (o<→≤ a) + ... | tri≈ ¬a b ¬c = ZChain.sup zc (subst (λ k → k o≤ px) (sym b) o≤-refl ) + ... | tri> ¬a ¬b c = ZChain.sup zc ? sup=u : {b : Ordinal} (ab : odef A b) → - b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + b o≤ x → IsSup A (UnionCF A f mf ay supf0 (osuc b)) ab → supf0 b ≡ b sup=u {b} ab b<x is-sup with trio< b px - ... | tri< a ¬b ¬c = ? where - zc11 = ZChain.sup=u zc ab ? ? - ... | tri≈ ¬a b ¬c = ? + ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) is-sup + ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (subst (λ k → k o≤ px) (sym b) o≤-refl ) is-sup ... | tri> ¬a ¬b c = ? - ptotal1 : IsTotalOrderSet pchain1 - ptotal1 {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where - uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) - uz01 = chain-total A f mf ay supf1 ( (proj2 ca)) ( (proj2 cb)) - csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) - csupf {b} b≤x with trio< b px | inspect supf1 b - ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ ? , ? ⟫ - ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ ? , ? ⟫ - ... | tri> ¬a ¬b px<b | record { eq = eq1 } = ⊥-elim ( ¬sp=x (subst (λ k → sp1 ≡ supf1 k ) (sym zc30) (sym eq1) )) where + csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf0 b) (supf0 b) + csupf {b} b≤x with trio< b px + ... | tri< a ¬b ¬c = ZChain.csupf zc (o<→≤ a) + ... | tri≈ ¬a b ¬c = ZChain.csupf zc (subst (λ k → k o≤ px) (sym b) o≤-refl ) + ... | tri> ¬a ¬b px<b = ? where -- px< b ≤ x -- b ≡ x, supf x ≡ sp1 , ¬ x ≡ sp1 zc30 : x ≡ b zc30 with osuc-≡< b≤x ... | case1 eq = sym (eq) ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) + sis : {z : Ordinal} (z≤x : z o≤ x) → supf0 z ≡ & (SUP.sup (sup z≤x)) + sis = ? zc4 : ZChain A f mf ay x zc4 with ODC.∋-p O A (* x) ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip @@ -787,6 +765,11 @@ pzc z z<x = prev z z<x ysp = & (SUP.sup (ysup f mf ay)) + record SupE ( z : Ordinal ) : Set n where + field + z<x : z o< x + z=supfz : z ≡ ZChain.supf (pzc z z<x) z + psupf0 : (z : Ordinal) → Ordinal psupf0 z with trio< z x ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z @@ -842,7 +825,12 @@ subst (λ k → UChain A f mf ay supf x k ) (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u≤x is-sup (fsuc _ fc)) ⟫ - no-extension : ¬ spu ≡ x → ZChain A f mf ay x + record xSUP : Set n where + field + ax : odef A x + not-sup : IsSup A (UnionCF A f mf ay psupf0 x) ax + + no-extension : ¬ xSUP → ZChain A f mf ay x no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = sup=u ; sup = sup ; supf-is-sup = sis ; csupf = csupf ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } where