Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1060:a09f5e728f92
IChain?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 11 Dec 2022 08:48:42 +0900 |
parents | bd2a258f309c |
children | fc37082d2a8a |
files | src/zorn.agda |
diffstat | 1 files changed, 14 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Dec 10 17:41:17 2022 +0900 +++ b/src/zorn.agda Sun Dec 11 08:48:42 2022 +0900 @@ -276,11 +276,22 @@ ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain ay x z ch-is-sup : (u : Ordinal) {z : Ordinal } (u<x : u o< x) (supu=u : supf u ≡ u) ( fc : FClosure A f (supf u) z ) → UChain ay x z -UnionCF : ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( supf : Ordinal → Ordinal ) ( x : Ordinal ) → HOD +UnionCF : ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( supf : Ordinal → Ordinal ) ( x : Ordinal ) → HOD UnionCF A f ay supf x = record { od = record { def = λ z → odef A z ∧ UChain {A} {f} {supf} ay x z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } +-- Union of all UChain under limit ordinal x + +data IChain { A : HOD } { f : Ordinal → Ordinal } (supfz : {z : Ordinal } → z o< x → Ordinal) {y : Ordinal } (ay : odef A y ) + (x : Ordinal) : (z : Ordinal) → Set n where + ic-init : {z : Ordinal } (fc : FClosure A f y z) → IChain supf ay x z + ic-is-sup : (u : Ordinal) {z : Ordinal } (u<x : u o< x) (supu=u : supf u<x u ≡ u) ( fc : FClosure A f (supf u<x u) z ) → IChain supf ay x z + +UnionIC : ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) (supfz : {z : Ordinal } → z o< x → Ordinal) ( x : Ordinal ) → HOD +UnionIC A f ay supf x + = record { od = record { def = λ z → odef A z ∧ IChain {A} {f} supf ay x z } ; + odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } supf-inject0 : {x y : Ordinal } {supf : Ordinal → Ordinal } → (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y ) → supf x o< supf y → x o< y @@ -507,12 +518,6 @@ as : A ∋ maximal ¬maximal<x : {x : HOD} → A ∋ x → ¬ maximal < x -- A is Partial, use negative -record IChain (A : HOD) ( f : Ordinal → Ordinal ) {x : Ordinal } (supfz : {z : Ordinal } → z o< x → Ordinal) (z : Ordinal ) : Set n where - field - i : Ordinal - i<x : i o< x - fc : FClosure A f (supfz i<x) z - -- -- supf in TransFinite indution may differ each other, but it is the same because of the minimul sup -- @@ -1240,8 +1245,8 @@ mf x ax = ⟪ case2 mf00 , proj2 (mf< x ax ) ⟫ where mf00 : * x < * (f x) mf00 = proj1 ( mf< x ax ) - ... | tri> ¬a ¬b 0<x = record { supf = supf1 ; asupf = ? ; supf-mono = supf-mono ; order = ? - ; zo≤sz = λ _ → ? ; supfmax = ? ; is-minsup = ? ; cfcs = cfcs } where + ... | tri> ¬a ¬b 0<x = record { supf = supf1 ; asupf = asupf ; supf-mono = supf-mono ; order = ? + ; zo≤sz = ? ; supfmax = ? ; is-minsup = ? ; cfcs = cfcs } where -- mf : ≤-monotonic-f A f -- mf x ax = ? -- ⟪ case2 ( proj1 (mf< x ax)) , proj2 (mf< x ax ) ⟫ will result memory exhaust