Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 956:a2b13a4b6727
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 03 Nov 2022 12:11:38 +0900 |
parents | bc27df170a1e |
children | ce42b1c5cf42 |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Nov 03 10:16:02 2022 +0900 +++ b/src/zorn.agda Thu Nov 03 12:11:38 2022 +0900 @@ -479,7 +479,7 @@ m01 : w <= s m01 with trio< (supf u) (supf b) ... | tri< a ¬b ¬c = b-is-sup ⟪ aa , ch-is-sup u {w} a is-sup-z fc ⟫ - ... | tri≈ ¬a b ¬c = <=-trans ? ( b-is-sup ⟪ aa , ch-is-sup u {w} ? is-sup-z fc ⟫ ) + ... | tri≈ ¬a b ¬c = ? ... | tri> ¬a ¬b c = ? -- <=-trans (IsSup.x≤sup is-sup ⟪ aa , ch-is-sup u u<x is-sup-z fc ⟫) b<=s m07 : {s : Ordinal} → odef A s → ({z : Ordinal} → @@ -682,14 +682,15 @@ chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) m05 : ZChain.supf zc b ≡ b m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) - ⟪ ? , m04 ⟫ where - m10 : {s : Ordinal } → (odef A s ) - → ( {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) b) z → (z ≡ s) ∨ (z << s) ) - → {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) z → (z ≡ s) ∨ (z << s) - m10 = ? - m07 : {sup1 : Ordinal} → odef A sup1 → ({z : Ordinal} → - odef (UnionCF A f mf ay (ZChain.supf zc) b) z → (z ≡ sup1) ∨ (z << sup1)) → b o≤ sup1 - m07 {s} as min = IsSup.minsup (proj2 is-sup) as (m10 as min) + ⟪ record { x≤sup = λ {z} uz → IsSup.x≤sup (proj2 is-sup) (chain-mono1 (o<→≤ b<x) uz) + ; minsup = m07 } , m04 ⟫ where + m10 : {s : Ordinal } → (odef A s ) + → ( {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) b) z → (z ≡ s) ∨ (z << s) ) + → {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) z → (z ≡ s) ∨ (z << s) + m10 = ? + m07 : {s : Ordinal} → odef A s → ({z : Ordinal} → + odef (UnionCF A f mf ay (ZChain.supf zc) b) z → (z ≡ s) ∨ (z << s)) → b o≤ s + m07 {s} as s-is-sup = IsSup.minsup (proj2 is-sup) as (m10 as s-is-sup) m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b m08 {z} fcz = ZChain.fcy<sup zc (o<→≤ b<A) fcz m09 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b