Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 662:a45ec34b9fa7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 03 Jul 2022 14:20:22 +0900 |
parents | 9142e834c4c6 |
children | 5f85e71b2490 |
files | src/zorn.agda |
diffstat | 1 files changed, 31 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Jul 03 06:10:51 2022 +0900 +++ b/src/zorn.agda Sun Jul 03 14:20:22 2022 +0900 @@ -239,8 +239,9 @@ A∋maximal : A ∋ sup x<sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total, use positive +-- Union of supf z which o< x +-- record UChain (x : Ordinal) (chain : (z : Ordinal ) → z o< x → HOD) (z : Ordinal) : Set n where - -- Union of supf z which o< x field u : Ordinal u<x : u o< x @@ -255,7 +256,7 @@ ( c : Chain A f ay (Oprev.oprev op) chain) ( h : HasPrev A chain ax f ) → Chain A f ay x chain ch-is-sup : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( sup : IsSup A chain ax ) → Chain A f ay x - record { od = record { def = λ x → odef A x ∧ (odef chain x ∨ (FClosure A f y x)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } + record { od = record { def = λ z → odef A z ∧ (odef chain z ∨ (FClosure A f x z)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f ay x chain ch-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) @@ -264,14 +265,17 @@ record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } +ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) → (chain : HOD ) → Chain A f ay (& A) chain → (x : Ordinal) → x o< & A → HOD +ChainF A f {y} ay chain Ch x x<a = ? + record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where field chain : HOD chain-uniq : Chain A f ay z chain -record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : (x : Ordinal) → ZChain1 A f ay x ) ( z : Ordinal ) : Set (Level.suc n) where +record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where chain : HOD - chain = ZChain1.chain (zc0 z) + chain = ? field chain⊆A : chain ⊆' A chain∋init : odef chain init @@ -345,7 +349,7 @@ cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ - sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : (x : Ordinal) → ZChain1 A f as0 x ) (zc : ZChain A f as0 zc0 (& A) ) + sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f as0 (& A) ) (zc : ZChain A f as0 zc0 (& A) ) (total : IsTotalOrderSet (ZChain.chain zc) ) → SUP A (ZChain.chain zc) sp0 f mf zc0 zc total = supP (ZChain.chain zc) (ZChain.chain⊆A zc) total zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P @@ -354,7 +358,7 @@ --- --- the maximum chain has fix point of any ≤-monotonic function --- - fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : (x : Ordinal) → ZChain1 A f as0 x) (zc : ZChain A f as0 zc0 (& A) ) + fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f as0 (& A)) (zc : ZChain A f as0 zc0 (& A) ) → (total : IsTotalOrderSet (ZChain.chain zc) ) → f (& (SUP.sup (sp0 f mf zc0 zc total ))) ≡ & (SUP.sup (sp0 f mf zc0 zc total)) fixpoint f mf zc0 zc total = z14 where @@ -403,7 +407,7 @@ -- ZChain forces fix point on any ≤-monotonic function (fixpoint) -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain -- - z04 : (nmx : ¬ Maximal A ) → (zc0 : (x : Ordinal) → ZChain1 A (cf nmx) as0 x) (zc : ZChain A (cf nmx) as0 zc0 (& A)) → IsTotalOrderSet (ZChain.chain zc) → ⊥ + z04 : (nmx : ¬ Maximal A ) → (zc0 : ZChain1 A (cf nmx) as0 (& A)) (zc : ZChain A (cf nmx) as0 zc0 (& A)) → IsTotalOrderSet (ZChain.chain zc) → ⊥ z04 nmx zc0 zc total = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1 )))) (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc0 zc total ))) -- x ≡ f x ̄ @@ -428,11 +432,14 @@ sc = prev px px<x sc4 : ZChain1 A f ay x sc4 with ODC.∋-p O A (* x) - ... | no noax = record { chain = ? ; chain-uniq = ? } + ... | no noax = record { chain = chain sc ; chain-uniq = ch-noax op (subst (λ k → ¬ odef A k) &iso noax) ( chain-uniq sc ) } ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain1.chain sc ) ax f ) - ... | case1 pr = {!!} + ... | case1 pr = record { chain = chain sc ; chain-uniq = ch-hasprev op (subst (λ k → odef A k) &iso ax) ( chain-uniq sc ) + record { y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = sc6 } } where + sc6 : x ≡ f (HasPrev.y pr) + sc6 = subst (λ k → k ≡ f (HasPrev.y pr) ) &iso ( HasPrev.x=fy pr ) ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc ) ax ) - ... | case1 is-sup = {!!} where + ... | case1 is-sup = record { chain = schain ; chain-uniq = sc9 } where -- A∋sc -- x is a sup of zc sup0 : SUP A (ZChain1.chain sc ) sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where @@ -445,6 +452,10 @@ schain : HOD schain = record { od = record { def = λ x → odef A x ∧ ( odef (ZChain1.chain sc ) x ∨ (FClosure A f (& sp) x)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } + sc8 : Chain A f ay ? ? + sc8 = ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) ? ? + sc9 : Chain A f ay x schain + sc9 = ? ... | case2 ¬x=sup = {!!} ... | no ¬ox = ? where supf : (z : Ordinal) → z o< x → HOD @@ -452,7 +463,7 @@ sc5 : HOD sc5 = record { od = record { def = λ z → odef A z ∧ (UChain x supf z ∨ FClosure A f y z)} ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : (x : Ordinal) → ZChain1 A f ay x) + ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : ZChain1 A f ay (& A)) → ((z : Ordinal) → z o< x → ZChain A f ay zc0 z) → ZChain A f ay zc0 x ind f mf {y} ay x zc0 prev with Oprev-p x ... | yes op = zc4 where @@ -461,7 +472,7 @@ -- px = Oprev.oprev op supf : Ordinal → HOD - supf x = ZChain1.chain (zc0 x) + supf x = ZChain1.chain zc0 zc : ZChain A f ay zc0 (Oprev.oprev op) zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px @@ -629,7 +640,7 @@ ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = ? ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case supf : Ordinal → HOD - supf x = ZChain1.chain (zc0 x) + supf x = ZChain1.chain zc0 uzc : {z : Ordinal} → (u : UChain x ? z) → ZChain A f ay zc0 (UChain.u u) uzc {z} u = prev (UChain.u u) (UChain.u<x u) Uz : HOD @@ -646,7 +657,7 @@ u-chain∋init = ? -- case2 ( init ay ) supf0 : Ordinal → HOD supf0 z with trio< z x - ... | tri< a ¬b ¬c = ZChain1.chain (zc0 z) + ... | tri< a ¬b ¬c = ZChain1.chain zc0 ... | tri≈ ¬a b ¬c = Uz ... | tri> ¬a ¬b c = Uz u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w @@ -658,9 +669,9 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl - seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain (zc0 b) ≡ supf0 b + seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain zc0 ≡ supf0 b seq<x {b} b<x with trio< b x - ... | tri< a ¬b ¬c = cong (λ k → ZChain1.chain (zc0 b)) o<-irr -- b<x ≡ a + ... | tri< a ¬b ¬c = ? -- cong (λ k → (ZChain1.chain zc0) o<-irr -- b<x ≡ a ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y @@ -671,8 +682,8 @@ SZ0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ZChain1 A f ay x SZ0 f mf ay x = TransFinite {λ z → ZChain1 A f ay z} (sind f mf ay ) x - SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f ay (SZ0 f mf ay) (& A) - SZ f mf {y} ay = TransFinite {λ z → ZChain A f ay (SZ0 f mf ay) z } (λ x → ind f mf ay x (SZ0 f mf ay) ) (& A) + SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f ay (SZ0 f mf ay (& A)) (& A) + SZ f mf {y} ay = TransFinite {λ z → ZChain A f ay (SZ0 f mf ay (& A)) z } (λ x → ind f mf ay x (SZ0 f mf ay (& A)) ) (& A) zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM @@ -684,7 +695,7 @@ zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) zorn02 {x} ax m<x = proj2 zorn03 (& x) ax (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) - ... | yes ¬Maximal = ⊥-elim ( z04 nmx zc0 zorn04 total ) where + ... | yes ¬Maximal = ⊥-elim ( z04 nmx (zc0 (& A)) zorn04 total ) where -- if we have no maximal, make ZChain, which contradict SUP condition nmx : ¬ Maximal A nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where @@ -692,7 +703,7 @@ zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ zc0 : (x : Ordinal) → ZChain1 A (cf nmx) as0 x zc0 x = TransFinite {λ z → ZChain1 A (cf nmx) as0 z} (sind (cf nmx) (cf-is-≤-monotonic nmx) as0) x - zorn04 : ZChain A (cf nmx) as0 zc0 (& A) + zorn04 : ZChain A (cf nmx) as0 (zc0 (& A)) (& A) zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) total : IsTotalOrderSet (ZChain.chain zorn04) total {a} {b} = zorn06 where