changeset 117:a4c97390d312

minimum assuption
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 26 Jun 2019 08:38:33 +0900
parents 47541e86c6ac
children 78fe704c3543
files HOD.agda
diffstat 1 files changed, 12 insertions(+), 6 deletions(-) [+]
line wrap: on
line diff
--- a/HOD.agda	Wed Jun 26 08:05:58 2019 +0900
+++ b/HOD.agda	Wed Jun 26 08:38:33 2019 +0900
@@ -68,6 +68,10 @@
   sup-x  : {n : Level } → ( Ordinal {n} → Ordinal {n}) →  Ordinal {n}
   sup-lb : {n : Level } → { ψ : Ordinal {n} →  Ordinal {n}} → {z : Ordinal {n}}  →  z o< sup-o ψ → z o< osuc (ψ (sup-x ψ))
   -- sup-lb : {n : Level } → ( ψ : Ordinal {n} →  Ordinal {n}) → ( ∀ {x : Ordinal {n}} →  ψx  o<  z ) →  z o< osuc ( sup-o ψ ) 
+  minimul : {n : Level } → (x : HOD {suc n} ) → ¬ (x == od∅ )→ HOD {suc n} 
+  -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox  ( minimum of x )
+  x∋minimul : {n : Level } → (x : HOD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) )
+  minimul-1 : {n : Level } → (x : HOD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord  y) )
 
 _∋_ : { n : Level } → ( a x : HOD {n} ) → Set n
 _∋_ {n} a x  = def a ( od→ord x )
@@ -356,14 +360,16 @@
          replacement {ψ} X x = sup-c< ψ {x}
          ∅-iso :  {x : HOD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) 
          ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq  
-         minimul : (x : HOD {suc n} ) → ¬ (x == od∅ )→ HOD {suc n} 
-         minimul x  not = {!!}
          regularity :  (x : HOD) (not : ¬ (x == od∅)) →
             (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅)
-         proj1 (regularity x not ) = {!!}
-         proj2 (regularity x not ) = record { eq→ = reg ; eq← = {!!} } where
-            reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y
-            reg {y} t = {!!}
+         proj1 (regularity x not ) = x∋minimul x not
+         proj2 (regularity x not ) = record { eq→ = lemma1 ; eq← = λ {y} d → lemma2 {y} d } where
+             lemma1 : {x₁ : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ → def od∅ x₁
+             lemma1 {x₁} s = ⊥-elim  ( minimul-1 x not (ord→od x₁) lemma3 ) where
+                 lemma3 : def (minimul x not) (od→ord (ord→od x₁)) ∧ def x (od→ord (ord→od x₁))
+                 lemma3 = proj1 s x₁ (proj2 s)
+             lemma2 : {x₁ : Ordinal} → def od∅ x₁ → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁
+             lemma2 {y} d = ⊥-elim (empty (ord→od y) (def-subst {suc n} {_} {_} {od∅} {od→ord (ord→od y)} d refl (sym diso) ))
          extensionality : {A B : HOD {suc n}} → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A == B
          eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d  
          eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d