Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 26:a53ba59c5bda
dom-ψ
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 May 2019 22:40:06 +0900 |
parents | 0f3d98e97593 |
children | bade0a35fdd9 |
files | constructible-set.agda |
diffstat | 1 files changed, 16 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Sat May 18 16:28:10 2019 +0900 +++ b/constructible-set.agda Sat May 18 22:40:06 2019 +0900 @@ -173,6 +173,7 @@ field α : Ordinal {suc n} constructible : Ordinal {suc n} → Set n + -- constructible : (x : Ordinal {suc n} ) → x o< α → Set n open ConstructibleSet @@ -187,10 +188,22 @@ sup : S smax : ∀ { x : S } → x ≤ X → ψ x ≤ sup suniq : {max : S} → ( ∀ { x : S } → x ≤ X → ψ x ≤ max ) → max ≤ sup - repl : ( x : Ordinal {n} ) → Set n open SupR +record dom-ψ {n m : Level} (X : ConstructibleSet {n}) (ψ : ConstructibleSet {n} → ConstructibleSet {n} ) : Set (suc (suc n) ⊔ suc m) where + field + αψ : Ordinal {suc n} + inψ : (x : Ordinal {suc n} ) → Set m + X∋x : (x : ConstructibleSet {n} ) → inψ (α x) → X ∋ x + vψ : (x : Ordinal {suc n} ) → inψ x → ConstructibleSet {n} + cset≡ψ : (x : ConstructibleSet {n} ) → (t : inψ (α x) ) → x ≡ ψ ( vψ (α x) t ) + +open dom-ψ + +postulate + ψ→C : {n m : Level} (X : ConstructibleSet {n}) (ψ : ConstructibleSet {n} → ConstructibleSet {n} ) → dom-ψ {n} {m} X ψ + _⊆_ : {n : Level} → ( A B : ConstructibleSet ) → ∀{ x : ConstructibleSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x @@ -201,7 +214,6 @@ sup (Sup {n} ψ X ) = suptraverse X (c∅ {n}) ψ smax (Sup ψ X ) = {!!} suniq (Sup ψ X ) = {!!} -repl (Sup ψ X ) = {!!} open import Data.Unit open SupR @@ -220,18 +232,13 @@ ; infinite = {!!} ; isZF = {!!} } where - Select : (X : ConstructibleSet {n}) → (ConstructibleSet {n} → Set (suc n)) → ConstructibleSet {n} + Select : (X : ConstructibleSet {n}) → (ConstructibleSet {n} → Set (suc n)) → ConstructibleSet {n} Select X ψ = record { α = α X ; constructible = λ x → select x } where select : Ordinal → Set n select x with ψ (record { α = x ; constructible = λ x → constructible X x }) ... | t = Lift n ⊤ Replace : (X : ConstructibleSet {n} ) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet - Replace X ψ = record { α = α (sup supψ) ; constructible = λ x → repl1 x } where - supψ : SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X - supψ = Sup ψ X - repl1 : Ordinal {suc n} → Set n - repl1 x with repl supψ x - ... | t = Lift n ⊤ + Replace X ψ = record { α = αψ {n} {suc (suc n)} (ψ→C X ψ) ; constructible = λ x → inψ (ψ→C X ψ) x } _,_ : ConstructibleSet {n} → ConstructibleSet → ConstructibleSet a , b = record { α = maxα (α a) (α b) ; constructible = a∨b } where a∨b : Ordinal {suc n} → Set n