Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1251:a6416ea475bf
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Mar 2023 21:44:42 +0900 |
parents | 6c467705e6e4 |
children | c99c37121d47 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 24 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Wed Mar 15 19:44:38 2023 +0900 +++ b/src/generic-filter.agda Wed Mar 15 21:44:42 2023 +0900 @@ -359,7 +359,18 @@ (trans (cong (*) x=ψz) *iso) px ... | ⟪ Px , npz ⟫ = Px L∋gpr : {p : HOD } → GPR ∋ p → L ∋ (P \ p) - L∋gpr {p} record { z = z ; az = az ; x=ψz = x=ψz } = ? + L∋gpr {p} record { z = zp ; az = record { z = z ; az = az ; x=ψz = x=ψzp } ; x=ψz = x=ψz } + = NEG (subst (λ k → odef L k) fd40 (PDN.x∈PP az)) where + fd41 : * z ⊆ P + fd41 {x} lt = L⊆PP ( PDN.x∈PP az ) _ lt + fd40 : z ≡ & p + fd40 = begin + z ≡⟨ sym &iso ⟩ + & (* z) ≡⟨ cong (&) (sym (L\Lx=x fd41 )) ⟩ + & (P \ ( P \ * z ) ) ≡⟨ cong (λ k → & (P \ k)) (sym *iso) ⟩ + & (P \ * (& ( P \ * z ))) ≡⟨ cong (λ k → & (P \ * k )) (sym x=ψzp) ⟩ + & (P \ * zp) ≡⟨ sym x=ψz ⟩ + & p ∎ where open ≡-Reasoning gpr→gp : {p : HOD} → GPR ∋ p → GP ∋ (P \ p ) gpr→gp {p} record { z = zp ; az = azp ; x=ψz = x=ψzp } = gfp where open ≡-Reasoning @@ -372,8 +383,19 @@ gfilter1 : {p q : HOD} → GPR ∋ p → q ⊆ p → GPR ∋ q gfilter1 {p} {q} record { z = np ; az = record { z = z ; az = pdz ; x=ψz = x=ψznp } ; x=ψz = x=ψz } q⊆p = record { z = _ ; az = gf30 ; x=ψz = ? } where gp = record { z = np ; az = record { z = z ; az = pdz ; x=ψz = x=ψznp } ; x=ψz = x=ψz } + open ≡-Reasoning + fd41 : * z ⊆ P + fd41 {x} lt = L⊆PP ( PDN.x∈PP pdz ) _ lt + p=*z : p ≡ * z + p=*z = trans (sym *iso) ( cong (*) (sym ( begin + z ≡⟨ sym &iso ⟩ + & (* z) ≡⟨ cong (&) (sym (L\Lx=x fd41 )) ⟩ + & (P \ ( P \ * z ) ) ≡⟨ cong (λ k → & (P \ k)) (sym *iso) ⟩ + & (P \ * (& ( P \ * z ))) ≡⟨ cong (λ k → & (P \ * k )) (sym x=ψznp) ⟩ + & (P \ * np) ≡⟨ sym x=ψz ⟩ + & p ∎ ))) q⊆P : q ⊆ P - q⊆P = ? + q⊆P {x} lt = L⊆PP ( PDN.x∈PP pdz ) _ (subst (λ k → odef k x) p=*z (q⊆p lt)) gf32 : (P \ p) ⊆ (P \ q) gf32 = proj1 (\-⊆ {P} {q} {p} q⊆P ) q⊆p gf30 : GP ∋ (P \ q )