Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1220:a8253c91f630
ZFP distr
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 06 Mar 2023 15:23:17 +0900 |
parents | 91740267e62d |
children | 0e8306b146f6 |
files | src/Tychonoff.agda src/ZProduct.agda |
diffstat | 2 files changed, 48 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Mon Mar 06 12:29:15 2023 +0900 +++ b/src/Tychonoff.agda Mon Mar 06 15:23:17 2023 +0900 @@ -448,12 +448,24 @@ ty02 : {p q : HOD} → FPSet ∋ p → FPSet ∋ q → Power P ∋ (p ∩ q) → FPSet ∋ (p ∩ q) ty02 {p} {q} record { z = zp ; az = azp ; x=ψz = x=ψzp } record { z = zq ; az = azq ; x=ψz = x=ψzq } Ppq = FPSet∋zpq (λ {z} xz → Ppq z (subst (λ k → odef k z) (sym *iso) xz )) ty50 where - ty52 : filter F ∋ ZFP p Q + x⊆pxq : * ? ⊆ ZFP p Q + x⊆pxq = ? + ty54 : Power (ZFP P Q) ∋ (ZFP p Q ∩ ZFP q Q) + ty54 z xz = subst (λ k → ZFProduct P Q k ) (zp-iso ty55) (ab-pair ty551 ty552 ) where + ty55 : odef (ZFP (p ∩ q) Q) z + ty55 = subst (λ k → odef k z ) (trans *iso (sym (proj1 ZFP∩) )) xz + ty551 : odef P (zπ1 ty55) + ty551 = ? + ty552 : odef Q (zπ2 ty55) + ty552 = ? + ty53 : filter F ∋ ZFP p Q + ty53 = filter1 F (λ z wz → isP→PxQ ? (subst (λ k → odef k z) *iso wz)) (subst (λ k → odef (filter F) k) (sym &iso) ? ) x⊆pxq + ty52 : filter F ∋ ZFP q Q ty52 = ? ty51 : filter F ∋ ( ZFP p Q ∩ ZFP q Q ) - ty51 = filter2 F ? ? ? + ty51 = filter2 F ty53 ty52 ty54 ty50 : filter F ∋ ZFP (p ∩ q) Q - ty50 = ? + ty50 = subst (λ k → filter F ∋ k ) (sym (proj1 ZFP∩)) ty51 UFP : ultra-filter FP
--- a/src/ZProduct.agda Mon Mar 06 12:29:15 2023 +0900 +++ b/src/ZProduct.agda Mon Mar 06 15:23:17 2023 +0900 @@ -229,14 +229,42 @@ zfp00 : {x : Ordinal} → ZFProduct (A ∩ B) C x → odef (ZFP A C ∩ ZFP B C) x zfp00 (ab-pair ⟪ pa , pb ⟫ qx) = ⟪ ab-pair pa qx , ab-pair pb qx ⟫ zfp01 : {x : Ordinal} → odef (ZFP A C ∩ ZFP B C) x → ZFProduct (A ∩ B) C x - zfp01 ⟪ p , q ⟫ = subst (λ k → ZFProduct (A ∩ B) C k) ? ( ab-pair (zfp02 ⟪ p , q ⟫ ) (zfp04 q) ) where + zfp01 {x} ⟪ p , q ⟫ = subst (λ k → ZFProduct (A ∩ B) C k) zfp07 ( ab-pair (zfp02 ⟪ p , q ⟫ ) (zfp04 q) ) where + zfp05 : & < * (zπ1 p) , * (zπ2 p) > ≡ x + zfp05 = zp-iso p + zfp06 : & < * (zπ1 q) , * (zπ2 q) > ≡ x + zfp06 = zp-iso q + zfp07 : & < * (zπ1 p) , * (zπ2 q) > ≡ x + zfp07 = trans (cong (λ k → & < k , * (zπ2 q) > ) + (proj1 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) (trans zfp05 (sym (zfp06)))))))) zfp06 zfp02 : {x : Ordinal } → (acx : odef (ZFP A C ∩ ZFP B C) x) → odef (A ∩ B) (zπ1 (proj1 acx)) - zfp02 {.(& < * _ , * _ >)} ⟪ ab-pair {a} {b} ax bx , bcx ⟫ = ⟪ ax , zfp03 bcx ? ⟫ where + zfp02 {.(& < * _ , * _ >)} ⟪ ab-pair {a} {b} ax bx , bcx ⟫ = ⟪ ax , zfp03 bcx refl ⟫ where zfp03 : {x : Ordinal } → (bc : odef (ZFP B C) x) → x ≡ (& < * a , * b >) → odef B (zπ1 (ab-pair {A} {C} ax bx)) - zfp03 (ab-pair x x₁) eq = ? + zfp03 (ab-pair {a1} {b1} x x₁) eq = subst (λ k → odef B k ) zfp08 x where + zfp08 : a1 ≡ a + zfp08 = subst₂ _≡_ &iso &iso (cong (&) (proj1 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) eq))))) zfp04 : {x : Ordinal } (acx : odef (ZFP B C) x )→ odef C (zπ2 acx) - zfp04 (ab-pair x x₁) = x₁ -proj2 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = ? ; eq← = ? } + zfp04 (ab-pair x x₁) = x₁ +proj2 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where + zfp00 : {x : Ordinal} → ZFProduct C (A ∩ B) x → odef (ZFP C A ∩ ZFP C B) x + zfp00 (ab-pair qx ⟪ pa , pb ⟫ ) = ⟪ ab-pair qx pa , ab-pair qx pb ⟫ + zfp01 : {x : Ordinal} → odef (ZFP C A ∩ ZFP C B ) x → ZFProduct C (A ∩ B) x + zfp01 {x} ⟪ p , q ⟫ = subst (λ k → ZFProduct C (A ∩ B) k) zfp07 ( ab-pair (zfp04 p) (zfp02 ⟪ p , q ⟫ ) ) where + zfp05 : & < * (zπ1 p) , * (zπ2 p) > ≡ x + zfp05 = zp-iso p + zfp06 : & < * (zπ1 q) , * (zπ2 q) > ≡ x + zfp06 = zp-iso q + zfp07 : & < * (zπ1 p) , * (zπ2 q) > ≡ x + zfp07 = trans (cong (λ k → & < * (zπ1 p) , k > ) + (sym (proj2 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) (trans zfp05 (sym (zfp06))))))))) zfp05 + zfp02 : {x : Ordinal } → (acx : odef (ZFP C A ∩ ZFP C B ) x) → odef (A ∩ B) (zπ2 (proj2 acx)) + zfp02 {.(& < * _ , * _ >)} ⟪ bcx , ab-pair {b} {a} ax bx ⟫ = ⟪ zfp03 bcx refl , bx ⟫ where + zfp03 : {x : Ordinal } → (bc : odef (ZFP C A ) x) → x ≡ (& < * b , * a >) → odef A (zπ2 (ab-pair {C} {B} ax bx )) + zfp03 (ab-pair {b1} {a1} x x₁) eq = subst (λ k → odef A k ) zfp08 x₁ where + zfp08 : a1 ≡ a + zfp08 = subst₂ _≡_ &iso &iso (cong (&) (proj2 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) eq))))) + zfp04 : {x : Ordinal } (acx : odef (ZFP C A ) x )→ odef C (zπ1 acx) + zfp04 (ab-pair x x₁) = x