Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 963:a8c3ccf8f9d9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Nov 2022 20:27:31 +0900 |
parents | d594a8439174 |
children | 0bee632db679 |
files | src/zorn.agda |
diffstat | 1 files changed, 5 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 04 19:19:51 2022 +0900 +++ b/src/zorn.agda Fri Nov 04 20:27:31 2022 +0900 @@ -677,12 +677,7 @@ m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) m05 : ZChain.supf zc b ≡ b - m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) - ⟪ record { x≤sup = λ {z} uz → IsMinSUP.x≤sup (proj2 is-sup) uz - ; minsup = m07 ; not-hp = m04 } , m04 ⟫ where - m07 : {s : Ordinal} → odef A s → ({z : Ordinal} → - odef (UnionCF A f mf ay (ZChain.supf zc) b) z → (z ≡ s) ∨ (z << s)) → b o≤ s - m07 {s} as s-is-sup = IsMinSUP.minsup (proj2 is-sup) as s-is-sup + m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) ⟪ record { x≤sup = λ {z} uz → IsMinSUP.x≤sup (proj2 is-sup) uz } , m04 ⟫ m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b m08 {z} fcz = ZChain.fcy<sup zc (o<→≤ b<A) fcz m09 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b @@ -714,9 +709,7 @@ chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) m05 : ZChain.supf zc b ≡ b - m05 = ZChain.sup=u zc ab (o<→≤ m09) - ⟪ record { x≤sup = λ lt → IsMinSUP.x≤sup (proj2 is-sup) lt - ; minsup = IsMinSUP.minsup (proj2 is-sup) ; not-hp = m04 } , m04 ⟫ -- ZChain on x + m05 = ZChain.sup=u zc ab (o<→≤ m09) ⟪ record { x≤sup = λ lt → IsMinSUP.x≤sup (proj2 is-sup) lt } , m04 ⟫ -- ZChain on x m06 : ChainP A f mf ay supf b m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = m05 } @@ -1227,8 +1220,8 @@ sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsMinSUP A (UnionCF A f mf ay supf0 b) supf0 ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf0 b) f b ) → supf0 b ≡ b sup=u {b} ab b≤x is-sup with trio< b px - ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) ⟪ record { x≤sup = λ lt → IsMinSUP.x≤sup (proj1 is-sup) lt ; minsup = ? } , proj2 is-sup ⟫ - ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) ⟪ record { x≤sup = λ lt → IsMinSUP.x≤sup (proj1 is-sup) lt ; minsup = ? } , proj2 is-sup ⟫ + ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) ⟪ record { x≤sup = λ lt → IsMinSUP.x≤sup (proj1 is-sup) lt } , proj2 is-sup ⟫ + ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) ⟪ record { x≤sup = λ lt → IsMinSUP.x≤sup (proj1 is-sup) lt } , proj2 is-sup ⟫ ... | tri> ¬a ¬b px<b = zc31 ? where zc30 : x ≡ b zc30 with osuc-≡< b≤x @@ -1391,7 +1384,7 @@ -- to prove sp is minsup , supf sp ≡ sp is necessary -- to prove supf s ≡ sp , sp is minsup is necessary z26 : supf sp ≡ sp - z26 = ZChain.sup=u zc ? ? ⟪ record { x≤sup = ? } , ? ⟫ + z26 = ZChain.sup=u zc asp (o<→≤ z22) ⟪ record { x≤sup = ? } , ? ⟫ z25 : u <= sp z25 = MinSUP.x≤sup sp1 ⟪ subst (λ k → odef A k) (ChainP.supu=u is-sup) (ZChain.asupf zc) , ch-is-sup u u<x is-sup (init (ZChain.asupf zc) (ChainP.supu=u is-sup)) ⟫