Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 895:aa496c232604
sp1 = supf (& A)
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Oct 2022 16:43:09 +0900 |
parents | b09e39629d86 |
children | 1f3a93bb4229 |
files | src/zorn.agda |
diffstat | 1 files changed, 6 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Oct 06 15:57:08 2022 +0900 +++ b/src/zorn.agda Thu Oct 06 16:43:09 2022 +0900 @@ -707,6 +707,7 @@ fixpoint f mf zc = z14 where chain = ZChain.chain zc supf = ZChain.supf zc + sp1 : SUP A chain sp1 = sp0 f mf as0 zc z10 : {a b : Ordinal } → (ca : odef chain a ) → supf b o< supf (& A) → (ab : odef A b ) → HasPrev A chain b f ∨ IsSup A chain {b} ab @@ -715,7 +716,11 @@ z21 : supf (& (SUP.sup sp1)) o< supf (& A) z21 with osuc-≡< ( ZChain.supf-mono zc (o<→≤ (c<→o< ( SUP.as sp1))) ) ... | case2 lt = lt - ... | case1 eq = ? + ... | case1 eq = ? where + z24 : supf (& (SUP.sup sp1)) ≡ & (SUP.sup sp1) + z24 = ZChain.sup=u zc ? ? ? + z25 : supf (& A) ≡ MinSUP.sup ( ZChain.minsup zc o≤-refl ) + z25 = ZChain.supf-is-minsup zc o≤-refl z12 : odef chain (& (SUP.sup sp1)) z12 with o≡? (& s) (& (SUP.sup sp1)) ... | yes eq = subst (λ k → odef chain k) eq ( ZChain.chain∋init zc )