Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 56:aad8cdce8845
almost ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 May 2019 00:07:23 +0900 |
parents | 9c0a5e28a572 |
children | 419688a279e0 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 5 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Mon May 27 23:45:56 2019 +0900 +++ b/ordinal-definable.agda Tue May 28 00:07:23 2019 +0900 @@ -332,7 +332,11 @@ proj2 ( regularity x non ) = reg1 where reg2 : {y : Ordinal} → ( def (minimul x non) y ∧ (minimul x non ∋ ord→od y) ∧ (x ∋ ord→od y) ) → ⊥ reg2 {y} t with proj1 t | proj1 (proj2 t) | proj2 (proj2 t) - ... | p1 | p2 | p3 = {!!} + ... | p1 | p2 | p3 with is-∋ x ( ord→od y) + reg2 {y} t | p1 | p2 | p3 | no ¬p = ⊥-elim (¬p p3 ) -- ¬ x ∋ ord→od y empty x case + reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul x non) (ord→od y) + reg2 {y} t | p1 | p2 | p3 | yes p | no ¬p = ⊥-elim (¬p p2 ) -- minimum contains nothing q.e.d. + reg2 {y} t | p1 | p2 | p3 | yes p | yes p₁ = {!!} reg0 : {y : Ordinal {suc n}} → Minimumo (od→ord x) → def (Select (minimul x non) (λ z → (minimul x non ∋ z) ∧ (x ∋ z))) y → def od∅ y reg0 {y} m t with trio< y (mino (minord x non)) reg0 {y} m t | tri< a ¬b ¬c with reg2 {y} ( record { @@ -355,9 +359,3 @@ reg1 : Select (minimul x non) (λ x₁ → (minimul x non ∋ x₁) ∧ (x ∋ x₁)) == od∅ reg1 = record { eq→ = reg0 (minord x non) ; eq← = λ () } - --- (o<-subst {suc n} {y} (c<→o< {suc n} (def-subst {suc n} (proj1 t ) {!!} {!!} )) {!!} {!!} ) --- c<> {n} (o<→c< {suc n} {mino (minord x non)} {y} (case2 lto)) --- (def-subst {suc n} {ord→od (mino (minord x non))} {y} lt refl refl ) -- lemma y ( mino (minord x non) ) --- (def-subst {suc n} {ord→od y} {mino (minord x non)} (proj1 t) refl (sym diso)) --- {!!} where