Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 809:ab5aa49abde0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 15 Aug 2022 20:14:35 +0900 |
parents | 81018623e3c5 |
children | ae0f958e648b |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Aug 15 18:02:27 2022 +0900 +++ b/src/zorn.agda Mon Aug 15 20:14:35 2022 +0900 @@ -702,25 +702,29 @@ ax : odef A x not-sup : IsSup A (UnionCF A f mf ay supf0 x) ax - UnionCF⊆ : {z0 z1 : Ordinal} → (z0≤1 : z0 o≤ z1 ) → (z1≤x : z1 o≤ x ) + UnionCF⊆ : {z0 z1 : Ordinal} → (z0≤1 : z0 o≤ z1 ) → (z0≤px : z0 o≤ px ) → (z1≤x : z1 o≤ x ) → UnionCF A f mf ay supf0 z0 ⊆' UnionCF A f mf ay supf1 z1 - UnionCF⊆ {z0} {z1} z0≤1 z1≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ - UnionCF⊆ {z0} {z1} z0≤1 z1≤x ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where + UnionCF⊆ {z0} {z1} z0≤1 z0≤px z1≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ + UnionCF⊆ {z0} {z1} z0≤1 z0≤px z1≤x ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where zc60 : {w : Ordinal } → FClosure A f (supf0 u1) w → odef (UnionCF A f mf ay supf1 z1 ) w zc60 (init asp refl) with trio< u1 px | inspect supf1 u1 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = ? ; order = ? ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ + record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where + fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 ) + fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc ) + order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf1 s) z2 → + (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1) + order {s} {z2} s<u1 with trio< s px | inspect supf1 s + ... | tri< a ¬b ¬c | record { eq = eq1 } = ? + ... | tri≈ ¬a b ¬c | record{ eq = eq1 } = ? + ... | tri> ¬a ¬b c | record{ eq = eq1 } = ? ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = ? ; order = ? ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ - ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } = ? where - zc31 : supf0 u1 ≡ u1 - zc31 = ChainP.supu=u u1-is-sup - zc32 : u1 o≤ x - zc32 = OrdTrans u1≤x (OrdTrans z0≤1 z1≤x ) - zc30 : x ≡ u1 - zc30 with osuc-≡< zc32 - ... | case1 eq = sym (eq) - ... | case2 u1<x = ⊥-elim (¬p<x<op ⟪ px<u1 , subst (λ k → u1 o< k ) (sym (Oprev.oprev=x op)) u1<x ⟫ ) + record { fcy<sup = fcy<sup ; order = ? ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where + fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 ) + fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc ) + ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with osuc-≡< (OrdTrans u1≤x z0≤px) + ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 ) + ... | case2 lt = ⊥-elim ( o<> lt px<u1 ) zc60 (fsuc w1 fc) with zc60 fc ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫ @@ -748,8 +752,8 @@ ... | tri> ¬a ¬b c = {!!} csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) csupf {b} b≤x with trio< b px - ... | tri< a ¬b ¬c = UnionCF⊆ ? ? ( ZChain.csupf zc (o<→≤ a) ) - ... | tri≈ ¬a b ¬c = UnionCF⊆ ? ? ( ZChain.csupf zc (subst (λ k → k o≤ px) (sym b) o≤-refl )) + ... | tri< a ¬b ¬c = UnionCF⊆ o≤-refl (o<→≤ a) b≤x ( ZChain.csupf zc (o<→≤ a) ) + ... | tri≈ ¬a refl ¬c = UnionCF⊆ o≤-refl o≤-refl b≤x ( ZChain.csupf zc o≤-refl ) ... | tri> ¬a ¬b px<b = ⟪ {!!} , ch-is-sup b o≤-refl {!!} {!!} ⟫ where -- px< b ≤ x -- b ≡ x, supf x ≡ sp1 , ¬ x ≡ sp1