Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1006:ac182ad5bfd2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 19 Nov 2022 00:04:35 +0900 |
parents | 2808471040c0 |
children | 88fae58f89f5 |
files | src/zorn.agda |
diffstat | 1 files changed, 4 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 18 23:54:13 2022 +0900 +++ b/src/zorn.agda Sat Nov 19 00:04:35 2022 +0900 @@ -511,8 +511,8 @@ fsp≤sp : f sp <= sp fsp≤sp = subst (λ k → f k <= sp ) (sym (HasPrev.x=fy hp)) im00 - csupf-idem : (mf< : <-monotonic-f A f) {b : Ordinal } → b o≤ z → supf b o< z → supf (supf b) ≡ supf b - csupf-idem mf< {b} b≤z sfb<x = z52 where + supf-idem : (mf< : <-monotonic-f A f) {b : Ordinal } → b o≤ z → supf b o≤ z → supf (supf b) ≡ supf b + supf-idem mf< {b} b≤z sfb≤x = z52 where z54 : {w : Ordinal} → odef (UnionCF A f mf ay supf (supf b)) w → (w ≡ supf b) ∨ (w << supf b) z54 {w} ⟪ aw , ch-init fc ⟫ = fcy<sup b≤z fc z54 {w} ⟪ aw , ch-is-sup u u<x is-sup fc ⟫ = subst (λ k → (w ≡ k) ∨ (w << k )) @@ -523,7 +523,7 @@ su<z : supf u o< z su<z = subst (λ k → k o< z ) (sym (ChainP.supu=u is-sup)) ( ordtrans<-≤ u<b b≤z ) z52 : supf (supf b) ≡ supf b - z52 = sup=u asupf (o<→≤ sfb<x) ⟪ record { x≤sup = z54 } , IsMinSUP→NotHasPrev asupf z54 ( λ ax → proj1 (mf< _ ax)) ⟫ + z52 = sup=u asupf sfb≤x ⟪ record { x≤sup = z54 } , IsMinSUP→NotHasPrev asupf z54 ( λ ax → proj1 (mf< _ ax)) ⟫ UChain⊆ : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {z y : Ordinal} (ay : odef A y) { supf supf1 : Ordinal → Ordinal } @@ -1066,19 +1066,8 @@ spx = supf0 px spx≤px : supf0 px o≤ px spx≤px = zc-b<x _ sfpx<x - z54 : {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (supf0 px)) z → (z ≡ supf0 px) ∨ (z << supf0 px) - z54 {z} ⟪ az , ch-init fc ⟫ = ZChain.fcy<sup zc o≤-refl fc - z54 {z} ⟪ az , ch-is-sup u u<b is-sup fc ⟫ = subst (λ k → (z ≡ k) ∨ (z << k )) - (sym (ZChain.supf-is-minsup zc o≤-refl)) - (MinSUP.x≤sup (ZChain.minsup zc o≤-refl) (ZChain.cfcs zc mf< u<px o≤-refl ? fc )) where - u<px : u o< px - u<px = ZChain.supf-inject zc ( subst (λ k → k o< supf0 px) (sym (ChainP.supu=u is-sup)) u<b ) - -- u<b : u o< supf0 px - -- is-sup : ChainP A f mf ay (ZChain.supf zc) u - -- fc : FClosure A f (ZChain.supf zc u) z z52 : supf1 (supf0 px) ≡ supf0 px - z52 = trans (sf1=sf0 (zc-b<x _ sfpx<x)) ( ZChain.sup=u zc (ZChain.asupf zc) (zc-b<x _ sfpx<x) - ⟪ record { x≤sup = z54 } , ZChain.IsMinSUP→NotHasPrev zc (ZChain.asupf zc) z54 (( λ ax → proj1 (mf< _ ax))) ⟫ ) + z52 = trans (sf1=sf0 (zc-b<x _ sfpx<x)) ( ZChain.supf-idem zc mf< o≤-refl ? ) fc1 : FClosure A f (supf1 spx) w fc1 = subst (λ k → FClosure A f k w ) (trans (cong supf0 a=px) (sym z52) ) fc order : {s z1 : Ordinal} → supf1 s o< supf1 spx → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 spx) ∨ (z1 << supf1 spx)