Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 120:ac214eab1c3c
inifinite done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Jun 2019 08:34:19 +0900 |
parents | 6e264c78e420 |
children | 453ef0d4ee8a |
files | HOD.agda |
diffstat | 1 files changed, 17 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Wed Jun 26 22:53:30 2019 +0900 +++ b/HOD.agda Thu Jun 27 08:34:19 2019 +0900 @@ -22,6 +22,7 @@ open import Data.Unit open Ordinal +open _∧_ record _==_ {n : Level} ( a b : HOD {n} ) : Set n where field @@ -42,6 +43,10 @@ eq-trans : {n : Level} { x y z : HOD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } +⇔→== : {n : Level} { x y : HOD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y +eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m +eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m + -- Ordinal in HOD ( and ZFSet ) Ord : { n : Level } → ( a : Ordinal {n} ) → HOD {n} Ord {n} a = record { def = λ y → y o< a ; otrans = lemma } where @@ -59,6 +64,7 @@ diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x c<→o< : {n : Level} {x y : HOD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y ord-Ord :{n : Level} {x : Ordinal {n}} → x ≡ od→ord (Ord x) + ==→o≡ : {n : Level} → { x y : HOD {suc n} } → (x == y) → x ≡ y -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x -- supermum as Replacement Axiom @@ -194,8 +200,8 @@ ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d ∅< {n} {x} {y} d eq | lift () --- ∅6 : {n : Level} → { x : HOD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox --- ∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x +∅6 : {n : Level} → { x : HOD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox +∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x ) def-iso : {n : Level} {A B : HOD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t @@ -205,10 +211,6 @@ is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) -open _∧_ - -ord⇔ : {n : Level} → ( x y : HOD {suc n} ) → ( {z : Ordinal {suc n} } → def x z ⇔ def y z ) → od→ord x ≡ od→ord y -ord⇔ = {!!} -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) @@ -394,7 +396,15 @@ infinity∅ : Ord omega ∋ od∅ {suc n} infinity∅ = o<-subst (case1 (s≤s z≤n) ) ord-Ord refl infinity : (x : HOD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) - infinity x lt = {!!} where + infinity x lt = o<-subst ( lemma (od→ord x) lt ) eq refl where + eq : osuc (od→ord x) ≡ od→ord (Union (x , (x , x))) + eq = let open ≡-Reasoning in begin + osuc (od→ord x) + ≡⟨ ord-Ord ⟩ + od→ord (Ord (osuc (od→ord x))) + ≡⟨ cong ( λ k → od→ord k ) ( sym (==→o≡ ( ⇔→== uxxx-ord ))) ⟩ + od→ord (Union (x , (x , x))) + ∎ lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n)