Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 16:ac362cc8b10f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 May 2019 12:53:52 +0900 |
parents | 497152f625ee |
children | 6a668c6086a5 |
files | constructible-set.agda |
diffstat | 1 files changed, 126 insertions(+), 78 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Tue May 14 03:52:42 2019 +0900 +++ b/constructible-set.agda Tue May 14 12:53:52 2019 +0900 @@ -1,23 +1,28 @@ -module constructible-set where +open import Level +module constructible-set (n : Level) where -open import Level open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ) open import Relation.Binary.PropositionalEquality -data Ordinal {n : Level } : (lv : Nat) → Set n where - Φ : {lv : Nat} → Ordinal {n} lv - T-suc : {lv : Nat} → Ordinal {n} lv → Ordinal lv - ℵ_ : (lv : Nat) → Ordinal (Suc lv) +data OridinalD : (lv : Nat) → Set n where + Φ : {lv : Nat} → OridinalD lv + OSuc : {lv : Nat} → OridinalD lv → OridinalD lv + ℵ_ : (lv : Nat) → OridinalD (Suc lv) -data _o<_ {n : Level } : {lx ly : Nat} → Ordinal {n} lx → Ordinal {n} ly → Set n where - l< : {lx ly : Nat } → {x : Ordinal {n} lx } → {y : Ordinal {n} ly } → lx < ly → x o< y - Φ< : {lx : Nat} → {x : Ordinal {n} lx} → Φ {n} {lx} o< T-suc {n} {lx} x - s< : {lx : Nat} → {x y : Ordinal {n} lx} → x o< y → T-suc {n} {lx} x o< T-suc {n} {lx} y - ℵΦ< : {lx : Nat} → {x : Ordinal {n} (Suc lx) } → Φ {n} {Suc lx} o< (ℵ lx) - ℵ< : {lx : Nat} → {x : Ordinal {n} (Suc lx) } → T-suc {n} {Suc lx} x o< (ℵ lx) +record Ordinal : Set n where + field + lv : Nat + ord : OridinalD lv + +data _o<_ : {lx ly : Nat} → OridinalD lx → OridinalD ly → Set n where + l< : {lx ly : Nat } → {x : OridinalD lx } → {y : OridinalD ly } → lx < ly → x o< y + Φ< : {lx : Nat} → {x : OridinalD lx} → Φ {lx} o< OSuc {lx} x + s< : {lx : Nat} → {x y : OridinalD lx} → x o< y → OSuc {lx} x o< OSuc {lx} y + ℵΦ< : {lx : Nat} → {x : OridinalD (Suc lx) } → Φ {Suc lx} o< (ℵ lx) + ℵ< : {lx : Nat} → {x : OridinalD (Suc lx) } → OSuc {Suc lx} x o< (ℵ lx) open import Data.Nat.Properties open import Data.Empty @@ -27,9 +32,9 @@ open import Relation.Binary.Core -nat< : { x y : Nat } → x ≡ y → x < y → ⊥ -nat< {Zero} {Zero} refl () -nat< {Suc x} {.(Suc x)} refl (s≤s t) = nat< {x} {x} refl t +≡→¬< : { x y : Nat } → x ≡ y → x < y → ⊥ +≡→¬< {Zero} {Zero} refl () +≡→¬< {Suc x} {.(Suc x)} refl (s≤s t) = ≡→¬< {x} {x} refl t x≤x : { x : Nat } → x ≤ x x≤x {Zero} = z≤n @@ -38,49 +43,69 @@ x<>y : { x y : Nat } → x > y → x < y → ⊥ x<>y {.(Suc _)} {.(Suc _)} (s≤s lt) (s≤s lt1) = x<>y lt lt1 -triO> : {n : Level } → {lx ly : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} ly } → ly < lx → x o< y → ⊥ -triO> {n} {lx} {ly} {x} {y} y<x xo<y with <-cmp lx ly -triO> {n} {lx} {ly} {x} {y} y<x xo<y | tri< a ¬b ¬c = ¬c y<x -triO> {n} {lx} {ly} {x} {y} y<x xo<y | tri≈ ¬a b ¬c = ¬c y<x -triO> {n} {lx} {ly} {x} {y} y<x (l< x₁) | tri> ¬a ¬b c = ¬a x₁ -triO> {n} {lx} {ly} {Φ} {T-suc _} y<x Φ< | tri> ¬a ¬b c = ¬b refl -triO> {n} {lx} {ly} {T-suc px} {T-suc py} y<x (s< w) | tri> ¬a ¬b c = triO> y<x w -triO> {n} {lx} {ly} {Φ {u}} {ℵ w} y<x ℵΦ< | tri> ¬a ¬b c = ¬b refl -triO> {n} {lx} {ly} {(T-suc _)} {ℵ u} y<x ℵ< | tri> ¬a ¬b c = ¬b refl +triO> : {lx ly : Nat} {x : OridinalD lx } { y : OridinalD ly } → ly < lx → x o< y → ⊥ +triO> {lx} {ly} {x} {y} y<x xo<y with <-cmp lx ly +triO> {lx} {ly} {x} {y} y<x xo<y | tri< a ¬b ¬c = ¬c y<x +triO> {lx} {ly} {x} {y} y<x xo<y | tri≈ ¬a b ¬c = ¬c y<x +triO> {lx} {ly} {x} {y} y<x (l< x₁) | tri> ¬a ¬b c = ¬a x₁ +triO> {lx} {ly} {Φ} {OSuc _} y<x Φ< | tri> ¬a ¬b c = ¬b refl +triO> {lx} {ly} {OSuc px} {OSuc py} y<x (s< w) | tri> ¬a ¬b c = triO> y<x w +triO> {lx} {ly} {Φ {u}} {ℵ w} y<x ℵΦ< | tri> ¬a ¬b c = ¬b refl +triO> {lx} {ly} {(OSuc _)} {ℵ u} y<x ℵ< | tri> ¬a ¬b c = ¬b refl -trio! : {n : Level } → {lv : Nat} → {x : Ordinal {n} lv } → x o< x → ⊥ -trio! {n} {lx} {x} (l< y) = nat< refl y -trio! {n} {lx} {T-suc y} (s< t) = trio! t +≡→¬o< : {lv : Nat} → {x : OridinalD lv } → x o< x → ⊥ +≡→¬o< {lx} {x} (l< y) = ≡→¬< refl y +≡→¬o< {lx} {OSuc y} (s< t) = ≡→¬o< t -trio<> : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → y o< x → x o< y → ⊥ -trio<> {n} {lx} {x} {y} (l< lt) _ = nat< refl lt -trio<> {n} {lx} {x} {y} _ (l< lt) = nat< refl lt -trio<> {n} {lx} {.(T-suc _)} {.(T-suc _)} (s< s) (s< t) = +trio<> : {lx : Nat} {x : OridinalD lx } { y : OridinalD lx } → y o< x → x o< y → ⊥ +trio<> {lx} {x} {y} (l< lt) _ = ≡→¬< refl lt +trio<> {lx} {x} {y} _ (l< lt) = ≡→¬< refl lt +trio<> {lx} {.(OSuc _)} {.(OSuc _)} (s< s) (s< t) = trio<> s t -trio<≡ : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → x ≡ y → x o< y → ⊥ -trio<≡ refl = trio! +trio<≡ : {lx : Nat} {x : OridinalD lx } { y : OridinalD lx } → x ≡ y → x o< y → ⊥ +trio<≡ refl = ≡→¬o< -trio>≡ : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → x ≡ y → y o< x → ⊥ -trio>≡ refl = trio! +trio>≡ : {lx : Nat} {x : OridinalD lx } { y : OridinalD lx } → x ≡ y → y o< x → ⊥ +trio>≡ refl = ≡→¬o< -triO : {n : Level } → {lx ly : Nat} → Ordinal {n} lx → Ordinal {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) -triO {n} {lx} {ly} x y = <-cmp lx ly +triO : {lx ly : Nat} → OridinalD lx → OridinalD ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) +triO {lx} {ly} x y = <-cmp lx ly -triOonSameLevel : {n : Level } → {lx : Nat} → Trichotomous _≡_ ( _o<_ {n} {lx} {lx} ) -triOonSameLevel {n} {lv} Φ Φ = tri≈ trio! refl trio! -triOonSameLevel {n} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ trio! refl trio! -triOonSameLevel {n} {lv} Φ (T-suc y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) -triOonSameLevel {n} {.(Suc lv)} Φ (ℵ lv) = tri< (ℵΦ< {n} {lv} {Φ} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {n} {lv} {Φ} )) ) -triOonSameLevel {n} {Suc lv} (ℵ lv) Φ = tri> ( λ lt → trio<> lt (ℵΦ< {n} {lv} {Φ} ) ) (λ ()) (ℵΦ< {n} {lv} {Φ} ) -triOonSameLevel {n} {Suc lv} (ℵ lv) (T-suc y) = tri> ( λ lt → trio<> lt (ℵ< {n} {lv} {y} ) ) (λ ()) (ℵ< {n} {lv} {y} ) -triOonSameLevel {n} {lv} (T-suc x) Φ = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< -triOonSameLevel {n} {.(Suc lv)} (T-suc x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) -triOonSameLevel {n} {lv} (T-suc x) (T-suc y) with triOonSameLevel x y -triOonSameLevel {n} {lv} (T-suc x) (T-suc y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) -triOonSameLevel {n} {lv} (T-suc x) (T-suc x) | tri≈ ¬a refl ¬c = tri≈ trio! refl trio! -triOonSameLevel {n} {lv} (T-suc x) (T-suc y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) +triOonSameLevel : {lx : Nat} → Trichotomous _≡_ ( _o<_ {lx} {lx} ) +triOonSameLevel {lv} Φ Φ = tri≈ ≡→¬o< refl ≡→¬o< +triOonSameLevel {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬o< refl ≡→¬o< +triOonSameLevel {lv} Φ (OSuc y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) +triOonSameLevel {.(Suc lv)} Φ (ℵ lv) = tri< (ℵΦ< {lv} {Φ} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {lv} {Φ} )) ) +triOonSameLevel {Suc lv} (ℵ lv) Φ = tri> ( λ lt → trio<> lt (ℵΦ< {lv} {Φ} ) ) (λ ()) (ℵΦ< {lv} {Φ} ) +triOonSameLevel {Suc lv} (ℵ lv) (OSuc y) = tri> ( λ lt → trio<> lt (ℵ< {lv} {y} ) ) (λ ()) (ℵ< {lv} {y} ) +triOonSameLevel {lv} (OSuc x) Φ = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< +triOonSameLevel {.(Suc lv)} (OSuc x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) +triOonSameLevel {lv} (OSuc x) (OSuc y) with triOonSameLevel x y +triOonSameLevel {lv} (OSuc x) (OSuc y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) +triOonSameLevel {lv} (OSuc x) (OSuc x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬o< refl ≡→¬o< +triOonSameLevel {lv} (OSuc x) (OSuc y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) +<→≤ : {lx ly : Nat} → lx < ly → (Suc lx ≤ ly) +<→≤ {Zero} {Suc ly} (s≤s lt) = s≤s z≤n +<→≤ {Suc lx} {Zero} () +<→≤ {Suc lx} {Suc ly} (s≤s lt) = s≤s (<→≤ lt) + +orddtrans : {lx ly lz : Nat} {x : OridinalD lx } { y : OridinalD ly } { z : OridinalD lz } → x o< y → y o< z → x o< z +orddtrans {lx} {ly} {lz} x<y y<z with <-cmp lx ly | <-cmp ly lz +orddtrans {lx} {ly} {lz} x<y y<z | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = l< ( <-trans a a₁ ) +orddtrans {lx} {ly} {lz} x<y y<z | tri< a ¬b ¬c | tri≈ ¬a refl ¬c₁ = l< a +orddtrans {lx} {ly} {lz} x<y y<z | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = l< {!!} -- ⊥-elim ( ¬a c ) +orddtrans {lx} {ly} {lz} x<y y<z | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = l< {!!} +orddtrans {lx} {ly} {lz} x<y y<z | tri> ¬a ¬b c | tri≈ ¬a₁ refl ¬c = l< {!!} +orddtrans {lx} {ly} {lz} x<y y<z | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = {!!} +orddtrans {lx} {ly} {lz} x<y y<z | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = l< a +orddtrans {lx} {ly} {lz} x<y y<z | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = l< {!!} +orddtrans {lx} {lx} {lx} x<y y<z | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = orddtrans1 x<y y<z where + orddtrans1 : {lx : Nat} {x y z : OridinalD lx } → x o< y → y o< z → x o< z + orddtrans1 = {!!} + + max : (x y : Nat) → Nat max Zero Zero = Zero @@ -88,57 +113,80 @@ max (Suc x) Zero = (Suc x) max (Suc x) (Suc y) = Suc ( max x y ) -maxα> : {n : Level } → { lx ly : Nat } → Ordinal {n} lx → Ordinal {n} ly → lx > ly → Ordinal {n} lx +-- use cannot use OridinalD (Data.Nat_⊔_ lx ly), I don't know why + +maxα> : { lx ly : Nat } → OridinalD lx → OridinalD ly → lx > ly → OridinalD lx maxα> x y _ = x -maxα= : {n : Level } → { lx : Nat } → Ordinal {n} lx → Ordinal {n} lx → Ordinal {n} lx +maxα= : { lx : Nat } → OridinalD lx → OridinalD lx → OridinalD lx maxα= x y with triOonSameLevel x y maxα= x y | tri< a ¬b ¬c = y maxα= x y | tri≈ ¬a b ¬c = x maxα= x y | tri> ¬a ¬b c = x +OrdTrans : Transitive (λ ( a b : Ordinal ) → (a ≡ b) ∨ (Ordinal.lv a < Ordinal.lv b) ∨ (Ordinal.ord a o< Ordinal.ord b) ) +OrdTrans (case1 refl) (case1 refl) = case1 refl +OrdTrans (case1 refl) (case2 lt2) = case2 lt2 +OrdTrans (case2 lt1) (case1 refl) = case2 lt1 +OrdTrans (case2 (case1 x)) (case2 (case1 y)) = case2 ( case1 ( <-trans x y ) ) +OrdTrans (case2 (case1 x)) (case2 (case2 y)) = case2 {!!} +OrdTrans (case2 (case2 x)) (case2 (case1 y)) = case2 {!!} +OrdTrans (case2 (case2 x)) (case2 (case2 y)) = case2 {!!} + +OrdPreorder : Preorder n n n +OrdPreorder = record { Carrier = Ordinal + ; _≈_ = _≡_ + ; _∼_ = λ a b → (a ≡ b) ∨ (Ordinal.lv a < Ordinal.lv b) ∨ (Ordinal.ord a o< Ordinal.ord b ) + ; isPreorder = record { + isEquivalence = record { refl = refl ; sym = sym ; trans = trans } + ; reflexive = case1 + ; trans = OrdTrans + } + } + -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' -data Constructible {n : Level } {lv : Nat} ( α : Ordinal {n} lv ) : Set (suc n) where - fsub : ( ψ : Ordinal {n} lv → Set n ) → Constructible α - xself : Ordinal {n} lv → Constructible α +data Constructible {lv : Nat} ( α : OridinalD lv ) : Set (suc n) where + fsub : ( ψ : OridinalD lv → Set n ) → Constructible α + xself : OridinalD lv → Constructible α -record ConstructibleSet {n : Level } : Set (suc n) where +record ConstructibleSet : Set (suc n) where field level : Nat - α : Ordinal {n} level + α : OridinalD level constructible : Constructible α open ConstructibleSet -data _c∋_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → - Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where - c> : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } - (ta : Constructible {n} {lv} α ) ( tx : Constructible {n} {lv'} α' ) → α' o< α → ta c∋ tx - xself-fsub : {lv : Nat} {α : Ordinal {n} lv } - (ta : Ordinal {n} lv ) ( ψ : Ordinal {n} lv → Set n ) → _c∋_ {n} {_} {_} {α} {α} (xself ta ) ( fsub ψ) - fsub-fsub : {lv lv' : Nat} {α : Ordinal {n} lv } - ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) → - ( ∀ ( x : Ordinal {n} lv ) → ψ x → ψ₁ x ) → _c∋_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) +data _c∋_ : {lv lv' : Nat} {α : OridinalD lv } {α' : OridinalD lv' } → + Constructible {lv} α → Constructible {lv'} α' → Set n where + c> : {lv lv' : Nat} {α : OridinalD lv } {α' : OridinalD lv' } + (ta : Constructible {lv} α ) ( tx : Constructible {lv'} α' ) → α' o< α → ta c∋ tx + xself-fsub : {lv : Nat} {α : OridinalD lv } + (ta : OridinalD lv ) ( ψ : OridinalD lv → Set n ) → _c∋_ {_} {_} {α} {α} (xself ta ) ( fsub ψ) + fsub-fsub : {lv lv' : Nat} {α : OridinalD lv } + ( ψ : OridinalD lv → Set n ) ( ψ₁ : OridinalD lv → Set n ) → + ( ∀ ( x : OridinalD lv ) → ψ x → ψ₁ x ) → _c∋_ {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) -_∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n +_∋_ : (ConstructibleSet ) → (ConstructibleSet ) → Set n a ∋ x = constructible a c∋ constructible x -transitiveness : {n : Level} → (a b c : ConstructibleSet {n}) → a ∋ b → b ∋ c → a ∋ c -transitiveness = {!!} +transitiveness : (a b c : ConstructibleSet ) → a ∋ b → b ∋ c → a ∋ c +transitiveness a b c a∋b b∋c with constructible a c∋ constructible b | constructible b c∋ constructible c +... | t1 | t2 = {!!} -data _c≈_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → - Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where - crefl : {lv : Nat} {α : Ordinal {n} lv } → _c≈_ {n} {_} {_} {α} {α} (xself α ) (xself α ) - feq : {lv : Nat} {α : Ordinal {n} lv } - → ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) - → (∀ ( x : Ordinal {n} lv ) → ψ x ⇔ ψ₁ x ) → _c≈_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) +data _c≈_ : {lv lv' : Nat} {α : OridinalD lv } {α' : OridinalD lv' } → + Constructible {lv} α → Constructible {lv'} α' → Set n where + crefl : {lv : Nat} {α : OridinalD lv } → _c≈_ {_} {_} {α} {α} (xself α ) (xself α ) + feq : {lv : Nat} {α : OridinalD lv } + → ( ψ : OridinalD lv → Set n ) ( ψ₁ : OridinalD lv → Set n ) + → (∀ ( x : OridinalD lv ) → ψ x ⇔ ψ₁ x ) → _c≈_ {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) -_≈_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n +_≈_ : (ConstructibleSet ) → (ConstructibleSet ) → Set n a ≈ x = constructible a c≈ constructible x -ConstructibleSet→ZF : {n : Level } → ZF {suc n} {n} -ConstructibleSet→ZF {n} = record { +ConstructibleSet→ZF : ZF {suc n} +ConstructibleSet→ZF = record { ZFSet = ConstructibleSet ; _∋_ = _∋_ ; _≈_ = _≈_