Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 900:ac4daa43ef2a
roll back to u<x
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 07 Oct 2022 17:13:41 +0900 |
parents | 37a09244cebd |
children | 6146d75131f5 |
files | src/zorn.agda |
diffstat | 1 files changed, 30 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Oct 07 08:28:49 2022 +0900 +++ b/src/zorn.agda Fri Oct 07 17:13:41 2022 +0900 @@ -262,7 +262,7 @@ data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z - ch-is-sup : (u : Ordinal) {z : Ordinal } (u≤x : supf u o≤ supf x) ( is-sup : ChainP A f mf ay supf u ) + ch-is-sup : (u : Ordinal) {z : Ordinal } (u≤x : u o< x) ( is-sup : ChainP A f mf ay supf u ) ( fc : FClosure A f (supf u) z ) → UChain A f mf ay supf x z -- @@ -571,12 +571,12 @@ cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ chain-mono : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal ) - {a b c : Ordinal} → supf a o≤ supf b + {a b c : Ordinal} → a o≤ b → odef (UnionCF A f mf ay supf a) c → odef (UnionCF A f mf ay supf b) c chain-mono f mf ay supf {a} {b} {c} a≤b ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ chain-mono f mf ay supf {a} {b} {c} a≤b ⟪ uaa , ch-is-sup ua ua<x is-sup fc ⟫ = - ⟪ uaa , ch-is-sup ua (OrdTrans ua<x a≤b ) is-sup fc ⟫ + ⟪ uaa , ch-is-sup ua (ordtrans<-≤ ua<x a≤b ) is-sup fc ⟫ sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y) (zc : ZChain A f mf ay x ) → SUP A (ZChain.chain zc) @@ -586,7 +586,6 @@ uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) uz01 = chain-total A f mf ay (ZChain.supf zc) ( (proj2 ca)) ( (proj2 cb)) - -- -- Second TransFinite Pass for maximality -- @@ -594,7 +593,7 @@ SZ1 : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) (x : Ordinal) → ZChain1 A f mf ay zc x SZ1 f mf {y} ay zc x = TransFinite { λ x → ZChain1 A f mf ay zc x } zc1 x where - chain-mono1 : {a b c : Ordinal} → (ZChain.supf zc a) o≤ (ZChain.supf zc b) + chain-mono1 : {a b c : Ordinal} → a o≤ b → odef (UnionCF A f mf ay (ZChain.supf zc) a) c → odef (UnionCF A f mf ay (ZChain.supf zc) b) c chain-mono1 {a} {b} {c} a≤b = chain-mono f mf ay (ZChain.supf zc) a≤b is-max-hp : (x : Ordinal) {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → @@ -619,7 +618,7 @@ zc05 : odef (UnionCF A f mf ay supf b) (supf s) zc05 with zc04 ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ - ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ as , ch-is-sup u (o<→≤ zc08) is-sup fc ⟫ where + ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ as , ch-is-sup u (ZChain.supf-inject zc zc08) is-sup fc ⟫ where zc07 : FClosure A f (supf u) (supf s) -- supf u ≤ supf s → supf u o≤ supf s zc07 = fc zc06 : supf u ≡ u @@ -642,7 +641,7 @@ ... | case2 lt = case2 (subst₂ (λ j k → j < * k ) refl (sym (ZChain.supf-is-minsup zc (o<→≤ b<z) )) lt ) zc1 : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 A f mf ay zc y₁) → ZChain1 A f mf ay zc x - zc1 x prev with Oprev-p x + zc1 x prev with Oprev-p x -- prev is not used now.... ... | yes op = record { is-max = is-max } where px = Oprev.oprev op zc-b<x : {b : Ordinal } → b o< x → b o< osuc px @@ -654,18 +653,23 @@ is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua b<x ab has-prev a<b is-max {a} {b} ua b<x ab P a<b | case2 is-sup - = ⟪ ab , ch-is-sup b sb≤sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where + = ⟪ ab , ch-is-sup b b<x m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where b<A : b o< & A b<A = z09 ab sb≤sx : supf b o≤ supf x sb≤sx = ZChain.supf-mono zc (o<→≤ b<x ) + sb<sx : supf b o< supf x + sb<sx with osuc-≡< sb≤sx + ... | case2 lt = lt + ... | case1 sb=sx = ? where + -- b ≡ x + -- b o< px → a < * b → odef (UnionCF A f mf ay supf px) b m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) b f m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = - chain-mono1 sb≤sx (HasPrev.ay nhp) - ; x=fy = HasPrev.x=fy nhp } ) + chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) m05 : ZChain.supf zc b ≡ b m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) - ⟪ record { x<sup = λ {z} uz → IsSup.x<sup (proj2 is-sup) (chain-mono1 sb≤sx uz) } , m04 ⟫ + ⟪ record { x<sup = λ {z} uz → IsSup.x<sup (proj2 is-sup) (chain-mono1 (o<→≤ b<x) uz) } , m04 ⟫ m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b m08 {z} fcz = ZChain.fcy<sup zc (o<→≤ b<A) fcz m09 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b @@ -682,9 +686,11 @@ is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua b<x ab has-prev a<b is-max {a} {b} ua b<x ab P a<b | case2 is-sup with IsSup.x<sup (proj2 is-sup) (init-uchain A f mf ay ) ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl )) ⟫ - ... | case2 y<b = ⟪ ab , ch-is-sup b sb≤sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where + ... | case2 y<b = ⟪ ab , ch-is-sup b b<x m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where sb≤sx : supf b o≤ supf x sb≤sx = ZChain.supf-mono zc (o<→≤ b<x ) + sb<sx : supf b o< supf x + sb<sx = ? m09 : b o< & A m09 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) m07 : {z : Ordinal} → FClosure A f y z → z <= ZChain.supf zc b @@ -694,11 +700,11 @@ m08 {s} {z1} s<b fc = order m09 s<b fc m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) b f m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = - chain-mono1 sb≤sx (HasPrev.ay nhp) + chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) m05 : ZChain.supf zc b ≡ b m05 = ZChain.sup=u zc ab (o<→≤ m09) - ⟪ record { x<sup = λ lt → IsSup.x<sup (proj2 is-sup) (chain-mono1 sb≤sx lt )} , m04 ⟫ -- ZChain on x + ⟪ record { x<sup = λ lt → IsSup.x<sup (proj2 is-sup) (chain-mono1 (o<→≤ b<x) lt )} , m04 ⟫ -- ZChain on x m06 : ChainP A f mf ay supf b m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = m05 } @@ -835,13 +841,17 @@ ... | case2 b<x = ⊥-elim ( ¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) zc4 : ZChain A f mf ay x --- supf px ≤ supf x - zc4 with osuc-≡< ? - ... | case1 sfpx=px = record { supf = supf1 ; sup=u = ? ; asupf = asupf1 ; supf-mono = supf-mono1 ; supf-< = supf-<1 + zc4 with trio< x (supf0 px) + ... | tri> ¬a ¬b c = record { supf = supf0 ; sup=u = ? ; asupf = ? ; supf-mono = ? ; supf-< = ? ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = ? } where - + ... | tri≈ ¬a b ¬c = ? where + -- ... | case1 sfpx=px = record { supf = supf1 ; sup=u = ? ; asupf = asupf1 ; supf-mono = supf-mono1 ; supf-< = supf-<1 + -- ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = ? } where + -- we are going to determine (supf x), which is not specified in previous zc -- case1 : supf px ≡ px -- supf px is MinSUP of previous chain , supf x ≡ MinSUP of Union of UChain and FClosure px + sfpx=px = ? pchainpx : HOD pchainpx = record { od = record { def = λ z → (odef A z ∧ UChain A f mf ay supf0 px z ) ∨ FClosure A f px z } ; odmax = & A ; <odmax = zc00 } where @@ -927,7 +937,7 @@ zc21 : MinSUP A (UnionCF A f mf ay supf0 z) zc21 = ZChain.minsup zc (o<→≤ a) zc24 : {x₁ : Ordinal} → odef (UnionCF A f mf ay supf0 z) x₁ → (x₁ ≡ sp1) ∨ (x₁ << sp1) - zc24 {x₁} ux = MinSUP.x<sup sup1 (case1 (chain-mono f mf ay supf0 (ZChain.supf-mono zc (o<→≤ a)) ux)) + zc24 {x₁} ux = MinSUP.x<sup sup1 (case1 (chain-mono f mf ay supf0 (o<→≤ a) ux)) zc19 : supf0 z o≤ sp1 zc19 = subst (λ k → k o≤ sp1) (sym (ZChain.supf-is-minsup zc (o<→≤ a))) ( MinSUP.minsup zc21 (MinSUP.asm sup1) zc24 ) ... | tri≈ ¬a b ¬c = zc18 where @@ -940,7 +950,7 @@ supf0 px ≡⟨ sym sfpx=px ⟩ px ∎ where open ≡-Reasoning zc24 : {x₁ : Ordinal} → odef (UnionCF A f mf ay supf0 z) x₁ → (x₁ ≡ sp1) ∨ (x₁ << sp1) - zc24 {x₁} ux = MinSUP.x<sup sup1 (case1 (chain-mono f mf ay supf0 (ZChain.supf-mono zc (o≤-refl0 b)) ux)) + zc24 {x₁} ux = MinSUP.x<sup sup1 (case1 (chain-mono f mf ay supf0 ? ux)) zc18 : px o≤ sp1 -- supf0 z ≡ px zc18 = subst (λ k → k o≤ sp1) zc20 ( MinSUP.minsup zc21 (MinSUP.asm sup1) zc24 ) ... | tri> ¬a ¬b c = o≤-refl @@ -1120,7 +1130,7 @@ zc22 = supf-inject0 supf-mono1 (ordtrans<-≤ sz1<x ? ) -- c : px ≡ spuf0 px o< supf0 z1 , px o< z1 o≤ supf1 z1 o< x - ... | case2 px<spfx = ? where + ... | tri< a ¬b ¬c = ? where -- case2 : px o< supf px -- supf px is not MinSUP of previous chain , supf x ≡ supf px