Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 729:ac6b4d200f27
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 19 Jul 2022 01:15:05 +0900 |
parents | e864471a818f |
children | 2c0fe13e3e5c ddeb107b6f71 |
files | src/zorn.agda |
diffstat | 1 files changed, 23 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 18 21:50:17 2022 +0900 +++ b/src/zorn.agda Tue Jul 19 01:15:05 2022 +0900 @@ -209,6 +209,14 @@ ... | case1 y=x = <-irr (case1 ( fcn-inject s mf cy cx y=x )) x<y ... | case2 y<x = <-irr (case2 x<y) (fcn-< s mf cy cx y<x ) +fc-conv : (A : HOD ) (f : Ordinal → Ordinal) {b u : Ordinal } + → {p0 p1 : Ordinal → Ordinal} + → p0 u ≡ p1 u + → FClosure A f (p0 u) b → FClosure A f (p1 u) b +fc-conv A f {.(p0 u)} {u} {p0} {p1} p0u=p1u (init ap0u) = subst (λ k → FClosure A f (p1 u) k) (sym p0u=p1u) + ( init (subst (λ k → odef A k) p0u=p1u ap0u )) +fc-conv A f {_} {u} {p0} {p1} p0u=p1u (fsuc z fc) = fsuc z (fc-conv A f {_} {u} {p0} {p1} p0u=p1u fc) + -- open import Relation.Binary.Properties.Poset as Poset IsTotalOrderSet : ( A : HOD ) → Set (Level.suc n) @@ -425,7 +433,20 @@ {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) (x : Ordinal) → ZChain1 A f mf ay zc x SZ1 A f mf {y} ay zc x = TransFinite { λ x → ZChain1 A f mf ay zc x } zc1 x where zc1 : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 A f mf ay zc y₁) → ZChain1 A f mf ay zc x - zc1 x prev = {!!} where + zc1 x prev = record { is-max = is-max ; chain-mono2 = ? ; b<x→chain = ? } where + bchain : {b : Ordinal} → b o< x → + odef (UnionCF A f mf ay (ZChain.supf zc) (& A)) b → + odef (UnionCF A f mf ay (ZChain.supf zc) x) b + bchain {b} b<x ⟪ ab , record { u = u ; u<x = u=0 ; uchain = ch-init b fc } ⟫ = + ⟪ ab , record { u = u ; u<x = case2 refl ; uchain = ch-init b fc } ⟫ + bchain {b} b<x ⟪ ab , record { u = u ; u<x = u<x ; uchain = ch-is-sup is-sup fc } ⟫ = + ⟪ ab , record { u = u ; u<x = case1 (b01 fc) ; uchain = ch-is-sup is-sup fc } ⟫ where + b01 : {b : Ordinal } → FClosure A f (ZChain.supf zc u) b → u o< x + b01 (init as) = ? + b01 (fsuc z fc) = b01 fc + chain-mono2 : {a b c : Ordinal} → a o≤ b → b o≤ x → + odef (UnionCF A f mf ay (ZChain.supf zc) a) c → odef (UnionCF A f mf ay (ZChain.supf zc) b) c + chain-mono2 {a} {b} {c} a≤b b≤x uac = ? is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → HasPrev A (UnionCF A f mf ay (ZChain.supf zc) x) ab f ∨ IsSup A (UnionCF A f mf ay (ZChain.supf zc) x) ab → @@ -449,7 +470,7 @@ ... | tri> ¬a ¬b c = {!!} ... | no lim = ZChain1.chain-mono2 (prev b b<x ) ? {!!} m04 where m04 : odef (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) b - m04 = ZChain1.is-max (prev (osuc b) ? ) {!!} {!!} ab {!!} a<b + m04 = ZChain1.is-max (prev (osuc b) ? ) {!!} <-osuc ab {!!} a<b --- --- the maximum chain has fix point of any ≤-monotonic function @@ -695,13 +716,6 @@ → UnionCF A f mf ay psupf x ≡ pchain chain-≡ lt = ==→o≡ record { eq→ = lt ; eq← = chain-mono } - fc-conv : {b u : Ordinal } - → {p0 p1 : Ordinal → Ordinal} - → p0 u ≡ p1 u - → FClosure A f (p0 u) b → FClosure A f (p1 u) b - fc-conv {.(p0 u)} {u} {p0} {p1} p0u=p1u (init ap0u) = subst (λ k → FClosure A f (p1 u) k) (sym p0u=p1u) ( init (subst (λ k → odef A k) p0u=p1u ap0u )) - fc-conv {_} {u} {p0} {p1} p0u=p1u (fsuc z fc) = fsuc z (fc-conv {_} {u} {p0} {p1} p0u=p1u fc) - zc5 : ZChain A f mf ay x zc5 with ODC.∋-p O A (* x) ... | no noax = no-extension where -- ¬ A ∋ p, just skip