Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1159:adba530ce1f0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 20 Jan 2023 14:40:54 +0900 |
parents | 6216562a2bce |
children | 2479884b35b2 |
files | src/OPair.agda src/Topology.agda |
diffstat | 2 files changed, 61 insertions(+), 36 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OPair.agda Fri Jan 20 11:22:37 2023 +0900 +++ b/src/OPair.agda Fri Jan 20 14:40:54 2023 +0900 @@ -254,12 +254,25 @@ ZFPproj2 : {A B X : HOD} → X ⊆ ZFP A B → HOD ZFPproj2 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ2 (X⊆P px) )) - +record PProj1 (L : HOD) (x : Ordinal) : Set n where + field + pq : Ordinal + opq : ord-pair pq + Lpq : odef L pq + x=pi1 : x ≡ pi1 opq - - +-- LP' = Replace' L ( λ p lp → ZFPproj1 {P} {Q} {p} (λ {x} px → (LPQ lp _ (subst (λ k → odef k x) (sym *iso) px ) ))) - +Proj1PP : (L P Q : HOD) → HOD +Proj1PP L P Q = record { od = record { def = λ x → odef P x ∧ ((y : Ordinal) → PProj1 L y) } ; odmax = & P ; <odmax = odef∧< } + +record PProj2 (L : HOD) (x : Ordinal) : Set n where + field + pq : Ordinal + opq : ord-pair pq + Lpq : odef L pq + x=pi2 : x ≡ pi2 opq - - +Proj2PP : (L P Q : HOD) → HOD +Proj2PP L P Q = record { od = record { def = λ x → odef Q x ∧ ((y : Ordinal) → PProj2 L y) } ; odmax = & Q ; <odmax = odef∧< } +
--- a/src/Topology.agda Fri Jan 20 11:22:37 2023 +0900 +++ b/src/Topology.agda Fri Jan 20 14:40:54 2023 +0900 @@ -410,16 +410,25 @@ -- Ultra Filter has limit point +record Neighbor {P : HOD} (TP : Topology P) (x v : Ordinal) : Set n where + field + u : Ordinal + ou : odef (OS TP) u + ux : odef (* u) x + v⊆P : * v ⊆ P + o⊆u : * u ⊆ * v + record UFLP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (F : Filter {L} {P} LP ) (ultra : ultra-filter F ) : Set (suc (suc n)) where field limit : Ordinal P∋limit : odef P limit - is-limit : {o : Ordinal} → odef (OS TP) o → odef (* o) limit → (* o) ⊆ filter F + is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ⊆ (* v) -- FIP is UFL -record NFIP (P : HOD )(X : Ordinal ) (u : Ordinal) : Set n where +-- filter Base +record FBase (P : HOD )(X : Ordinal ) (u : Ordinal) : Set n where field b x : Ordinal b⊆X : * b ⊆ * X @@ -435,10 +444,10 @@ fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {u x : Ordinal} → * u ⊆ * X → Subbase (* u) x → o∅ o< x N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD - N {X} CSX fp = record { od = record { def = λ u → NFIP P X u } ; odmax = osuc (& P) - ; <odmax = λ {x} lt → subst₂ (λ j k → j o< osuc k) &iso refl (⊆→o≤ (NFIP.u⊆P lt)) } + N {X} CSX fp = record { od = record { def = λ u → FBase P X u } ; odmax = osuc (& P) + ; <odmax = λ {x} lt → subst₂ (λ j k → j o< osuc k) &iso refl (⊆→o≤ (FBase.u⊆P lt)) } N⊆PP : {X : Ordinal } → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ Power P - N⊆PP CSX fp nx b xb = NFIP.u⊆P nx xb + N⊆PP CSX fp nx b xb = FBase.u⊆P nx xb F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → Filter {Power P} {P} (λ x → x) F {X} CSX fp = record { filter = N CSX fp ; f⊆L = N⊆PP CSX fp ; filter1 = f1 ; filter2 = f2 } where f1 : {p q : HOD} → Power P ∋ q → N CSX fp ∋ p → p ⊆ q → N CSX fp ∋ q @@ -451,17 +460,17 @@ f2 {p} {q} Np Nq Xpq = record { b = & Np+Nq ; x = & xp∧xq ; b⊆X = f20 ; sb = sbpq ; u⊆P = p∩q⊆p ; x⊆u = f22 } where p∩q⊆p : * (& (p ∩ q)) ⊆ P p∩q⊆p {x} pqx = subst (λ k → odef P k) &iso (power→ P _ Xpq (subst₂ (λ j k → odef j k ) *iso (sym &iso) pqx )) - Np+Nq = * (NFIP.b Np) ∪ * (NFIP.b Nq) - xp∧xq = * (NFIP.x Np) ∩ * (NFIP.x Nq) + Np+Nq = * (FBase.b Np) ∪ * (FBase.b Nq) + xp∧xq = * (FBase.x Np) ∩ * (FBase.x Nq) sbpq : Subbase (* (& Np+Nq)) (& xp∧xq) - sbpq = subst₂ (λ j k → Subbase j k ) (sym *iso) refl ( g∩ (sb⊆ case1 (NFIP.sb Np)) (sb⊆ case2 (NFIP.sb Nq))) + sbpq = subst₂ (λ j k → Subbase j k ) (sym *iso) refl ( g∩ (sb⊆ case1 (FBase.sb Np)) (sb⊆ case2 (FBase.sb Nq))) f20 : * (& Np+Nq) ⊆ * X f20 {x} npq with subst (λ k → odef k x) *iso npq - ... | case1 np = NFIP.b⊆X Np np - ... | case2 nq = NFIP.b⊆X Nq nq + ... | case1 np = FBase.b⊆X Np np + ... | case2 nq = FBase.b⊆X Nq nq f22 : * (& xp∧xq) ⊆ * (& (p ∩ q)) f22 = subst₂ ( λ j k → j ⊆ k ) (sym *iso) (sym *iso) (λ {w} xpq - → ⟪ subst (λ k → odef k w) *iso ( NFIP.x⊆u Np (proj1 xpq)) , subst (λ k → odef k w) *iso ( NFIP.x⊆u Nq (proj2 xpq)) ⟫ ) + → ⟪ subst (λ k → odef k w) *iso ( FBase.x⊆u Np (proj1 xpq)) , subst (λ k → odef k w) *iso ( FBase.x⊆u Nq (proj2 xpq)) ⟫ ) proper : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ¬ (N CSX fp ∋ od∅) proper = ? CAP : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → {p q : HOD } → Power P ∋ p → Power P ∋ q → Power P ∋ (p ∩ q) @@ -476,34 +485,37 @@ FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F UF -FIP→UFLP = ? +FIP→UFLP {P} TP fip {L} LP F UF = record { limit = FIP.limit fip ? ? ; P∋limit = ? ; is-limit = ? } where + ufl00 : {v : Ordinal} → Neighbor TP (FIP.limit fip ? ?) v → filter F ⊆ * v + ufl00 {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; o⊆u = o⊆u } = ? -- product topology of compact topology is compact Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where - L = pbase TP TQ - LPQ = pbase⊆PL TP TQ - uflP : {L : HOD} → (LP : L ⊆ Power P) (F : Filter {L} LP) (UF : ultra-filter F) + uflP : {L : HOD} → (LP : L ⊆ Power P) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TP LP F UF - uflP {L} LP F UF = FIP→UFLP TP (Compact→FIP TP CP) LP F UF - uflQ : {L : HOD} → (LP : L ⊆ Power Q) (F : Filter {L} LP) (UF : ultra-filter F) + uflP {L} LP F UF = FIP→UFLP TP (Compact→FIP TP CP) LP F UF + uflQ : {L : HOD} → (LP : L ⊆ Power Q) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TQ LP F UF - uflQ {L} LP F UF = FIP→UFLP TQ (Compact→FIP TQ CQ) LP F UF - -- Product of UFL has limit point - uflPQ : {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) + uflQ {L} LP F UF = FIP→UFLP TQ (Compact→FIP TQ CQ) LP F UF + -- Product of UFL has limit point + uflPQ : {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) LPQ F UF - uflPQ {L} LPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } where - LP : HOD - LP = ZFPproj1 (λ {x} p → LPQ ? _ p ) - LPP : L ⊆ Power P - LPP = ? - FP : Filter ? - FP = ? - UFP : ultra-filter FP - UFP = ? + uflPQ {L} LPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } where + LP : HOD -- proj1 of LPQ + LP = Proj1PP L (Power P) (Power Q) + LPP : LP ⊆ Power P + LPP {x} ⟪ Px , p1 ⟫ = Px + FP : Filter {LP} {P} LPP + FP = record { filter = Proj1PP (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where + ty00 : Proj1PP (filter F) (Power P) (Power Q) ⊆ LP + ty00 {x} ⟪ PPx , ppf ⟫ = ⟪ PPx , ( λ y → record { pq = PProj1.pq (ppf y) + ; opq = PProj1.opq (ppf y) ; Lpq = f⊆L F (PProj1.Lpq (ppf y)) ; x=pi1 = PProj1.x=pi1 (ppf y) } ) ⟫ + UFP : ultra-filter FP + UFP = record { proper = ? ; ultra = ? } uflp : UFLP TP LPP FP UFP - uflp = ? + uflp = FIP→UFLP TP (Compact→FIP TP CP) LPP FP UFP