Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 539:adbac273d2a6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Apr 2022 16:33:21 +0900 |
parents | 854908eb70f2 |
children | 920a5c0568c3 |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Apr 24 14:10:06 2022 +0900 +++ b/src/zorn.agda Sun Apr 24 16:33:21 2022 +0900 @@ -288,8 +288,6 @@ ... | case2 lt = ⊥-elim (¬c (subst₂ (λ j k → k < j ) refl *iso lt )) ... | tri≈ ¬a b ¬c = subst ( λ k → k ≡ & (SUP.sup sp1) ) &iso ( cong (&) b ) ... | tri> ¬a ¬b c = ⊥-elim z17 where - c1 : SUP.sup sp1 < * (f ( & ( SUP.sup sp1 ))) - c1 = c z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) < SUP.sup sp1) z15 = SUP.x<sup sp1 (subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) (ZChain.f-next zc z12) ) z17 : ⊥ @@ -314,7 +312,8 @@ zc0 : ZChain A sa f mf supO (Oprev.oprev op) zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) zc1 : ZChain A sa f mf supO x - zc1 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; is-max = {!!} } + zc1 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ; chain∋x = {!!} ; is-max = {!!} } ... | yes ax = zc4 where -- we have previous ordinal and A ∋ x px = Oprev.oprev op zc0 : ZChain A sa f mf supO (Oprev.oprev op) @@ -323,10 +322,16 @@ -- x has some y which y < x ∧ f y ≡ x -- x has no y which y < x zc4 : ZChain A sa f mf supO x - zc4 = record { chain = {!!} ; chain⊆A = {!!} ; f-total = {!!} ; f-next = {!!} ; is-max = {!!} } + zc4 with ODC.p∨¬p O ( Prev< A ax f ) + ... | case1 y = record { chain = zc5 ; chain⊆A = record { incl = λ lt → proj1 lt } + ; f-total = {!!} ; f-next = {!!} ; chain∋x = ⟪ subst (λ k → odef A (& k)) *iso sa , case1 (ZChain.chain∋x zc0) ⟫ ; is-max = {!!} } where + zc5 : HOD + zc5 = record { od = record { def = λ z → odef A z ∧ (odef (ZChain.chain zc0) z ∨ (z ≡ x) ∨ (z ≡ f x)) } ; odmax = & A ; <odmax = z07 } + ... | case2 not = {!!} + -- zc4 = record { chain = {!!} ; chain⊆A = {!!} ; f-total = {!!} ; f-next = {!!} ; chain∋x = {!!} ; is-max = {!!} } ind f mf x prev | no ¬ox with trio< (& A) x --- limit ordinal case ... | tri< a ¬b ¬c = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 - ; is-max = {!!} } where + ; chain∋x = {!!} ; is-max = {!!} } where zc0 = prev (& A) a ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b c = {!!}