Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 349:adc3c3a37308
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jul 2020 09:00:24 +0900 |
parents | 08d94fec239c |
children | 7389120cd6c0 |
files | Ordinals.agda ordinal.agda |
diffstat | 2 files changed, 24 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/Ordinals.agda Tue Jul 14 07:59:17 2020 +0900 +++ b/Ordinals.agda Tue Jul 14 09:00:24 2020 +0900 @@ -32,7 +32,7 @@ field x<nx : { y : ord } → (y o< next y ) osuc<nx : { x y : ord } → x o< next y → osuc x o< next y - ¬nx<nx : {x y : ord} → y o< x → x o< next y → ¬ ((z : ord) → ¬ (x ≡ osuc z)) + ¬nx<nx : {x y : ord} → y o< x → x o< osuc (next y) → ¬ ((z : ord) → ¬ (x ≡ osuc z)) record Ordinals {n : Level} : Set (suc (suc n)) where field @@ -230,25 +230,28 @@ next< : {x y z : Ordinal} → x o< next z → y o< next x → y o< next z next< {x} {y} {z} x<nz y<nx with trio< y (next z) next< {x} {y} {z} x<nz y<nx | tri< a ¬b ¬c = a - next< {x} {y} {z} x<nz y<nx | tri≈ ¬a b ¬c = ⊥-elim (¬nx<nx x<nz (subst (λ k → k o< next x) b y<nx) + next< {x} {y} {z} x<nz y<nx | tri≈ ¬a b ¬c = ⊥-elim (¬nx<nx x<nz (ordtrans (subst (λ k → k o< next x) b y<nx) <-osuc ) (λ w nz=ow → o<¬≡ nz=ow (subst₂ (λ j k → j o< k ) (sym nz=ow) nz=ow (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc) )))) - next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (¬nx<nx x<nz (ordtrans c y<nx ) + next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (¬nx<nx x<nz (ordtrans (ordtrans c y<nx ) <-osuc ) (λ w nz=ow → o<¬≡ (sym nz=ow) (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc )))) osuc< : {x y : Ordinal} → osuc x ≡ y → x o< y osuc< {x} {y} refl = <-osuc + next-is-limit : {x : Ordinal} → ¬ ((y : Ordinal) → ¬ (next x ≡ osuc y)) + next-is-limit {x} = ¬nx<nx {next x} {x} x<nx <-osuc + nexto=n : {x y : Ordinal} → x o< next (osuc y) → x o< next y nexto=n {x} {y} x<noy = next< (osuc<nx x<nx) x<noy nexto≡ : {x : Ordinal} → next x ≡ next (osuc x) nexto≡ {x} with trio< (next x) (next (osuc x) ) -- next x o< next (osuc x ) -> osuc x o< next x o< next (osuc x) -> next x ≡ osuc z -> z o o< next x -> osuc z o< next x -> next x o< next x - nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim (¬nx<nx (osuc<nx x<nx ) a + nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim (¬nx<nx (osuc<nx x<nx ) (ordtrans a <-osuc) (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) nexto≡ {x} | tri≈ ¬a b ¬c = b -- next (osuc x) o< next x -> osuc x o< next (osuc x) o< next x -> next (osuc x) ≡ osuc z -> z o o< next (osuc x) ... - nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim (¬nx<nx (ordtrans <-osuc x<nx) c + nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim (¬nx<nx (ordtrans <-osuc x<nx) (ordtrans c <-osuc) (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where
--- a/ordinal.agda Tue Jul 14 07:59:17 2020 +0900 +++ b/ordinal.agda Tue Jul 14 09:00:24 2020 +0900 @@ -220,18 +220,23 @@ ; osuc-≡< = osuc-≡< ; TransFinite = TransFinite1 ; TransFinite1 = TransFinite2 - ; not-limit = not-limit - ; next-limit = next-limit + ; not-limit-p = not-limit + } ; + isNext = record { + x<nx = x<nx + ; osuc<nx = λ {x} {y} → osuc<nx {x} {y} + ; ¬nx<nx = ¬nx<nx } } where next : Ordinal {suc n} → Ordinal {suc n} next (ordinal lv ord) = ordinal (Suc lv) (Φ (Suc lv)) - next-limit : {y : Ordinal} → (y o< next y) ∧ ((x : Ordinal) → x o< next y → osuc x o< next y) ∧ - ( (x : Ordinal) → y o< x → x o< next y → ¬ ((z : Ordinal) → ¬ (x ≡ osuc z) )) - next-limit {y} = record { proj1 = case1 a<sa ; proj2 = record { proj1 = lemma ; proj2 = lemma2 } } where - lemma : (x : Ordinal) → x o< next y → osuc x o< next y - lemma x (case1 lt) = case1 lt - lemma2 : (x : Ordinal) → y o< x → x o< next y → ¬ ((z : Ordinal) → ¬ x ≡ osuc z) + x<nx : { y : Ordinal } → (y o< next y ) + x<nx = case1 a<sa + osuc<nx : { x y : Ordinal } → x o< next y → osuc x o< next y + osuc<nx (case1 lt) = case1 lt + ¬nx<nx : {x y : Ordinal} → y o< x → x o< osuc (next y) → ¬ ((z : Ordinal) → ¬ (x ≡ osuc z)) + ¬nx<nx {x} {y} = lemma2 x where + lemma2 : (x : Ordinal) → y o< x → x o< osuc (next y) → ¬ ((z : Ordinal) → ¬ x ≡ osuc z) lemma2 (ordinal Zero (Φ 0)) (case2 ()) (case1 (s≤s z≤n)) not lemma2 (ordinal Zero (OSuc 0 dx)) (case2 Φ<) (case1 (s≤s z≤n)) not = not _ refl lemma2 (ordinal Zero (OSuc 0 dx)) (case2 (s< x)) (case1 (s≤s z≤n)) not = not _ refl @@ -239,6 +244,9 @@ lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 x) (case1 (s≤s (s≤s lt))) not = lemma3 x lt where lemma3 : {n l : Nat} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥ lemma3 (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n + lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 lt) (case2 lt2) not = {!!} + lemma2 (ordinal (Suc lx) (OSuc (Suc lx) os)) lt (case2 lt2) not = {!!} + not-limit : (x : Ordinal) → Dec (¬ ((y : Ordinal) → ¬ (x ≡ osuc y))) not-limit (ordinal lv (Φ lv)) = no (λ not → not (λ y () )) not-limit (ordinal lv (OSuc lv ox)) = yes (λ not → not (ordinal lv ox) refl )