Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 162:b06f5d2f34b1
Axiom of choice
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 15 Jul 2019 19:09:57 +0900 |
parents | 4c704b7a62e4 |
children | 61c60fef6a85 a1b5b890b796 |
files | HOD.agda |
diffstat | 1 files changed, 6 insertions(+), 26 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Mon Jul 15 18:26:56 2019 +0900 +++ b/HOD.agda Mon Jul 15 19:09:57 2019 +0900 @@ -217,19 +217,6 @@ Def : {n : Level} → (A : OD {suc n}) → OD {suc n} Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) -- Ord x does not help ord-power→ -OrdSubset : {n : Level} → (A x : Ordinal {suc n} ) → ZFSubset (Ord A) (Ord x) ≡ Ord ( minα A x ) -OrdSubset {n} A x = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where - lemma1 : {y : Ordinal} → def (ZFSubset (Ord A) (Ord x)) y → def (Ord (minα A x)) y - lemma1 {y} s with trio< A x - lemma1 {y} s | tri< a ¬b ¬c = proj1 s - lemma1 {y} s | tri≈ ¬a refl ¬c = proj1 s - lemma1 {y} s | tri> ¬a ¬b c = proj2 s - lemma2 : {y : Ordinal} → def (Ord (minα A x)) y → def (ZFSubset (Ord A) (Ord x)) y - lemma2 {y} lt with trio< A x - lemma2 {y} lt | tri< a ¬b ¬c = record { proj1 = lt ; proj2 = ordtrans lt a } - lemma2 {y} lt | tri≈ ¬a refl ¬c = record { proj1 = lt ; proj2 = lt } - lemma2 {y} lt | tri> ¬a ¬b c = record { proj1 = ordtrans lt c ; proj2 = lt } - -- Constructible Set on α -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x } -- L (Φ 0) = Φ @@ -244,9 +231,6 @@ -- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x -omega : { n : Level } → Ordinal {n} -omega = record { lv = Suc Zero ; ord = Φ 1 } - OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} @@ -487,14 +471,10 @@ ≡ od→ord (Union (x , (x , x))) lemma = cong (λ k → od→ord (Union ( k , ( k , k ) ))) oiso - -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set - -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] - record Choice (z : OD {suc n}) : Set (suc (suc n)) where - field - u : {x : OD {suc n}} ( x∈z : x ∈ z ) → OD {suc n} - t : {x : OD {suc n}} ( x∈z : x ∈ z ) → (x : OD {suc n} ) → OD {suc n} - choice : { x : OD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x } - -- choice : {x : OD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) → - -- axiom-of-choice : { X : OD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : OD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A - -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!} + -- Axiom of choice ( is equivalent to existence of minimul ) + -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] + choice-func : (X : OD {suc n} ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD + choice-func X {x} not X∋x = minimul x not + choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A + choice X {A} X∋A not = x∋minimul A not