Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 435:b18ca68d115a
fi;ter1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 20 Feb 2022 22:39:17 +0900 |
parents | 5f22af3562b7 |
children | 87b5303ceeb5 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 23 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Fri Feb 18 11:44:08 2022 +0900 +++ b/src/generic-filter.agda Sun Feb 20 22:39:17 2022 +0900 @@ -148,7 +148,29 @@ f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → find-p-⊆P (gr lt) o∅ (& y) P∅ (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } f1 : {p q : HOD} → q ⊆ P → PDHOD C P ∋ p → p ⊆ q → PDHOD C P ∋ q - f1 {p} {q} q⊆P PD∋p p⊆q = {!!} + f1 {p} {q} q⊆P PD∋p p⊆q = f01 (& p) (& q) (⊆→o≤ f02) PD∋p (⊆→o≤ f03) where + f02 : {x : Ordinal} → odef q x → odef P x + f02 {x} lt = subst (λ k → def (od P) k) &iso (incl q⊆P (subst (λ k → def (od q) k) (sym &iso) lt) ) + f03 : {x : Ordinal} → odef p x → odef q x + f03 {x} lt = subst (λ k → def (od q) k) &iso (incl p⊆q (subst (λ k → def (od p) k) (sym &iso) lt) ) + f04 : (ip : Ordinal) → PDN C P ip → (x : Ordinal) → ((y : Ordinal) → y o< x → ip o< osuc y → PDN C P y) → ip o< osuc x → PDN C P x + f04 ip PD x prev lt with trio< ip (osuc x) + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b c = ⊥-elim ( o<> c lt ) + ... | tri< a ¬b ¬c with osuc-≡< a + ... | case1 ip=x = {!!} + ... | case2 ip<x = record { gr = ctl← C (find-p C P (PDN.gr PD) ( next-p x (λ p → PGHOD (PDN.gr PD) C P (& p)))) f05 + ; pn<gr = f07 ; x∈PP = f06 } where + next1 : Ordinal + next1 = find-p C P (gr PD) (next-p x (λ p₁ → PGHOD (gr PD) C P (& p₁))) + f05 : next1 o< ctl-M C + f05 = {!!} + f06 : odef (Power P) x + f06 = {!!} + f07 : (y : Ordinal) → odef (* x) y → odef (* (find-p C P (ctl← C next1 f05) o∅)) y + f07 = {!!} + f01 : (ip iq : Ordinal) → iq o< osuc (& P) → PDN C P ip → ip o< osuc iq → PDN C P iq + f01 ip iq q<P PD = TransFinite0 {λ x → ip o< osuc x → PDN C P x } (f04 ip PD ) iq f2 : {p q : HOD} → PDHOD C P ∋ p → PDHOD C P ∋ q → PDHOD C P ∋ (p ∩ q) f2 {p} {q} PD∋p PD∋q = {!!}