Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 342:b1ccdbb14c92
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jul 2020 13:55:46 +0900 |
parents | 27d2933c4bd7 |
children | 34e71402d579 |
files | OD.agda Ordinals.agda |
diffstat | 2 files changed, 10 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 13 13:29:38 2020 +0900 +++ b/OD.agda Mon Jul 13 13:55:46 2020 +0900 @@ -396,7 +396,7 @@ lemmab : {x : HOD} → od→ord (x , x) o< next (od→ord x) lemmab {x} = subst (λ k → od→ord (x , x) o< k ) lemmab0 lemmab1 where lemmab0 : next (odmax (x , x)) ≡ next (od→ord x) - lemmab0 = {!!} + lemmab0 = trans (cong (λ k → next k) (omxx _)) (sym nexto≡) lemmab1 : od→ord (x , x) o< next ( odmax (x , x)) lemmab1 = ho< lemmac : {x y : HOD} → od→ord x o< od→ord y → od→ord (x , y) o< od→ord (y , y) @@ -408,7 +408,7 @@ lemma91 : od→ord (ord→od y) o< od→ord (ord→od y , ord→od y) lemma91 = c<→o< (case1 refl) lemma9 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next (od→ord (ord→od y , ord→od y)) - lemma9 = lemmaa {!!} + lemma9 = lemmaa (c<→o< (case1 refl)) lemma71 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next (od→ord (ord→od y)) lemma71 = next< lemma81 lemma9 lemma1 : od→ord (u y) o< next (osuc (od→ord (ord→od y , (ord→od y , ord→od y))))
--- a/Ordinals.agda Mon Jul 13 13:29:38 2020 +0900 +++ b/Ordinals.agda Mon Jul 13 13:55:46 2020 +0900 @@ -228,15 +228,21 @@ next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (proj2 (proj2 next-limit) (next z) x<nz (ordtrans c y<nx ) (λ w nz=ow → o<¬≡ (sym nz=ow) (proj1 (proj2 next-limit) _ (subst (λ k → w o< k ) (sym nz=ow) <-osuc )))) + osuc< : {x y : Ordinal} → osuc x ≡ y → x o< y + osuc< {x} {y} refl = <-osuc + nexto=n : {x y : Ordinal} → x o< next (osuc y) → x o< next y nexto=n {x} {y} x<noy = next< (proj1 (proj2 next-limit) _ (proj1 next-limit)) x<noy nexto≡ : {x : Ordinal} → next x ≡ next (osuc x) nexto≡ {x} with trio< (next x) (next (osuc x) ) - nexto≡ {x} | tri< a ¬b ¬c = {!!} + -- next x o< next (osuc x ) -> osuc x o< next x o< next (osuc x) -> next x ≡ osuc z -> z o o< next x -> osuc z o< next x -> next x o< next x + nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim ((proj2 (proj2 next-limit)) _ (proj1 (proj2 next-limit) _ (proj1 next-limit) ) a + (λ z eq → o<¬≡ (sym eq) ((proj1 (proj2 next-limit)) _ (osuc< (sym eq))))) nexto≡ {x} | tri≈ ¬a b ¬c = b + -- next (osuc x) o< next x -> osuc x o< next (osuc x) o< next x -> next (osuc x) ≡ osuc z -> z o o< next (osuc x) ... nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim ((proj2 (proj2 next-limit)) _ (ordtrans <-osuc (proj1 next-limit)) c - (λ z eq → o<¬≡ (sym eq) (proj1 (proj2 next-limit) _ (ordtrans <-osuc (subst (λ k → k o< next (osuc x)) eq {!!} ))))) + (λ z eq → o<¬≡ (sym eq) ((proj1 (proj2 next-limit)) _ (osuc< (sym eq))))) record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where field