Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 726:b2e2cd12e38f
psupf-mono and is-max conflict
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 18 Jul 2022 15:30:35 +0900 |
parents | 3c42f0441bbc |
children | 322dd6569072 |
files | src/zorn.agda |
diffstat | 1 files changed, 17 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 18 11:50:52 2022 +0900 +++ b/src/zorn.agda Mon Jul 18 15:30:35 2022 +0900 @@ -679,15 +679,29 @@ sup1 : {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (Oprev.oprev op)) z → (z ≡ b) ∨ (z << b) sup1 {z} uz = IsSup.x<sup b=sup ( chain-mono uz ) ... | no op = zc5 where + pzc : (z : Ordinal) → z o< x → ZChain A f mf ay z pzc z z<x = prev z z<x + psupf0 : (z : Ordinal) → Ordinal psupf0 z with trio< z x ... | tri< a ¬b ¬c = ZChain.supf (pzc z a) z ... | tri≈ ¬a b ¬c = y ... | tri> ¬a ¬b c = y + pchain : HOD pchain = UnionCF A f mf ay psupf0 x + + psupf0=pzc : {z : Ordinal} → (z<x : z o< x) → psupf0 z ≡ ZChain.supf (pzc z z<x) z + psupf0=pzc {z} z<x with trio< z x + ... | tri≈ ¬a b ¬c = ⊥-elim (¬a z<x) + ... | tri> ¬a ¬b c = ⊥-elim (¬a z<x) + ... | tri< a ¬b ¬c with o<-irr z<x a + ... | refl = refl + + psupf-mono : {z x1 : Ordinal} → (z<x1 : z o< x1) → x1 o≤ x → psupf0 z ≡ ZChain.supf (pzc z z<x1) z + psupf-mono {z} z<x1 x1≤x =? + ptotal : IsTotalOrderSet pchain ptotal {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) @@ -757,9 +771,10 @@ ⟪ ab , record { u = x=0 ; u<x = case2 refl ; uchain = ch-init b fc } ⟫ uzc-mono {b} {ob<x} ⟪ ab , record { u = u ; u<x = case2 x=0 ; uchain = ch-is-sup is-sup fc } ⟫ = ? uzc-mono {b} {ob<x} ⟪ ab , record { u = u ; u<x = case1 u<x ; uchain = ch-is-sup is-sup fc } ⟫ = - ⟪ ab , record { u = u ; u<x = case1 (ordtrans u<x ob<x) ; uchain = ch-is-sup uzc00 (fc-conv {b} {u} {ZChain.supf (prev (osuc b) ob<x)} {psupf0} uzc01 fc) } ⟫ where + ⟪ ab , record { u = u ; u<x = case1 (ordtrans u<x ob<x) ; uchain = ch-is-sup uzc00 + (fc-conv {b} {u} {ZChain.supf (prev (osuc b) ob<x)} {psupf0} uzc01 fc) } ⟫ where uzc01 : ZChain.supf (prev (osuc b) ob<x) u ≡ psupf0 u - uzc01 = ? + uzc01 = ? -- trans (sym (psupf0=pzc (ordtrans u<x ob<x ) )) ? uzc00 : ChainP A f mf ay psupf0 u b uzc00 = ?