Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 605:b42f0e50a831
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jun 2022 16:05:25 +0900 |
parents | 021fcb324990 |
children | 9bdb671cbffd |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 14 15:32:01 2022 +0900 +++ b/src/zorn.agda Tue Jun 14 16:05:25 2022 +0900 @@ -402,6 +402,15 @@ sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc c = & (SUP.sup sp1) + ys : {y : Ordinal} → (ay : odef A y) (f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → HOD + ys {y} ay f mf = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = {!!} } + init-chain : {y x : Ordinal} → (ay : odef A y) (f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → x o< osuc y → ZChain A y f x + init-chain {y} {x} ay f mf x≤y = record { chain = ys ay f mf ; chain⊆A = λ fx → A∋fc y f mf fx + ; f-total = i-total ; f-next = λ {x} sx → fsuc x sx ; chain∋sup = {!!} + ; initial = {!!} ; f-immediate = {!!} ; chain∋x = init ay ; is-max = {!!} ; fc∨sup = {!!} } where + i-total : IsTotalOrderSet (ys ay f mf ) + i-total fa fb = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp y f mf fa fb) + -- -- create all ZChains under o< x -- @@ -422,15 +431,6 @@ px<x : px o< x px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc - ys : HOD - ys = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = {!!} } - init-chain : ZChain A y f y - init-chain = record { chain = ys ; chain⊆A = λ fx → A∋fc y f mf fx - ; f-total = i-total ; f-next = λ {x} sx → fsuc x sx ; chain∋sup = {!!} - ; initial = {!!} ; f-immediate = {!!} ; chain∋x = init ay ; is-max = {!!} ; fc∨sup = {!!} } where - i-total : IsTotalOrderSet ys - i-total fa fb = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp y f mf fa fb) - fcs< : (A : HOD) {w y : Ordinal} (ay : odef A y) (c z : Ordinal) (x : Ordinal) → z o< w → Fc∨sup A ay f c z x → Fc∨sup A ay f c w x fcs< A ay c z x z<w (Finit x₁) = Finit x₁ @@ -586,9 +586,8 @@ ... | case2 b=sup = ⊥-elim ( ¬x=sup record { x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) ... | no ¬ox with trio< x y - ... | tri< a ¬b ¬c = record { chain = {!!} ; chain⊆A = {!!} ; f-total = {!!} ; f-next = {!!} ; chain∋sup = {!!} - ; initial = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} ; fc∨sup = {!!} } - ... | tri≈ ¬a b ¬c = {!!} + ... | tri< a ¬b ¬c = init-chain ay f mf {!!} + ... | tri≈ ¬a b ¬c = init-chain ay f mf {!!} ... | tri> ¬a ¬b y<x = UnionZ where UnionZ : ZChain A y f x UnionZ = record { chain = Uz ; chain⊆A = Uz⊆A ; f-total = u-total ; f-next = u-next ; chain∋sup = {!!}