Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 416:b737a2e0b46e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 30 Jul 2020 21:45:49 +0900 |
parents | 3dda56a5befd |
children | f464e48e18cc |
files | cardinal.agda ordinal.agda |
diffstat | 2 files changed, 32 insertions(+), 136 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Thu Jul 30 17:22:34 2020 +0900 +++ b/cardinal.agda Thu Jul 30 21:45:49 2020 +0900 @@ -26,144 +26,37 @@ open Bool open _==_ --- we have to work on Ordinal to keep OD Level n --- since we use p∨¬p which works only on Level n - -∋-p : (A x : HOD ) → Dec ( A ∋ x ) -∋-p A x with ODC.p∨¬p O ( A ∋ x ) -∋-p A x | case1 t = yes t -∋-p A x | case2 t = no t - ---_⊗_ : (A B : HOD) → HOD ---A ⊗ B = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } } where --- checkAB : { p : Ordinal } → def ZFProduct p → Set n --- checkAB (pair x y) = odef A x ∧ odef B y +-- _⊗_ : (A B : HOD) → HOD +-- A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) -func→od0 : (f : Ordinal → Ordinal ) → HOD -func→od0 f = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkfunc p ) }} where - checkfunc : { p : Ordinal } → def ZFProduct p → Set n - checkfunc (pair x y) = f x ≡ y - --- Power (Power ( A ∪ B )) ∋ ( A ⊗ B ) +Func : ( A B : HOD ) → OD +Func A B = record { def = λ x → (odef (Power (A ⊗ B)) x) + ∧ ( (a b c : Ordinal) → odef (ord→od x) (od→ord < ord→od a , ord→od b >) ∧ odef (ord→od x) (od→ord < ord→od a , ord→od c >) → b ≡ c ) } -Func : ( A B : HOD ) → HOD -Func A B = record { od = record { def = λ x → odef (Power (A ⊗ B)) x } } +Func∋f : {A B x : HOD} → ( f : (x : HOD ) → A ∋ x → ( HOD ∧ ((y : HOD ) → B ∋ y ))) → (lt : A ∋ x ) → def (Func A B ) (od→ord < x , proj1 (f x lt) > ) +Func∋f = {!!} --- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) - -func→od : (f : Ordinal → Ordinal ) → ( dom : HOD ) → HOD -func→od f dom = Replace dom ( λ x → < x , ord→od (f (od→ord x)) > ) +Func→f : {A B f x : HOD} → def ( Func A B) (od→ord f) → (x : HOD ) → A ∋ x → ( HOD ∧ ((y : HOD ) → B ∋ y )) +Func→f = {!!} -record Func←cd { dom cod : HOD } {f : Ordinal } : Set n where - field - func-1 : Ordinal → Ordinal - func→od∈Func-1 : Func dom cod ∋ func→od func-1 dom - -od→func : { dom cod : HOD } → {f : Ordinal } → odef (Func dom cod ) f → Func←cd {dom} {cod} {f} -od→func {dom} {cod} {f} lt = record { func-1 = λ x → sup-o {!!} ( λ y lt → lemma x {!!} ) ; func→od∈Func-1 = record { proj1 = {!!} ; proj2 = {!!} } } where - lemma : Ordinal → Ordinal → Ordinal - lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → odef (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) - lemma x y | p | no n = o∅ - lemma x y | p | yes f∋y = lemma2 {!!} where -- (ODC.double-neg-eilm O ( p {ord→od y} f∋y ))) where -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) - lemma2 : {p : Ordinal} → ord-pair p → Ordinal - lemma2 (pair x1 y1) with ODC.decp O ( x1 ≡ x) - lemma2 (pair x1 y1) | yes p = y1 - lemma2 (pair x1 y1) | no ¬p = o∅ - fod : HOD - fod = Replace dom ( λ x → < x , ord→od (sup-o {!!} ( λ y lt → lemma (od→ord x) {!!} )) > ) +Func₁ : {A B f : HOD} → def ( Func A B) (od→ord f) → {!!} +Func₁ = {!!} +Cod : {A B f : HOD} → def ( Func A B) (od→ord f) → {!!} +Cod = {!!} -open Func←cd - --- contra position of sup-o< --- +1-1 : {A B f : HOD} → def ( Func A B) (od→ord f) → {!!} +1-1 = {!!} --- postulate --- -- contra-position of mimimulity of supermum required in Cardinal --- sup-x : ( Ordinal → Ordinal ) → Ordinal --- sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) +onto : {A B f : HOD} → def ( Func A B) (od→ord f) → {!!} +onto = {!!} ------------- --- --- Onto map --- def X x -> xmap --- X ---------------------------> Y --- ymap <- def Y y --- -record Onto (X Y : HOD ) : Set n where +record Bijection (A B : Ordinal ) : Set n where field - xmap : Ordinal - ymap : Ordinal - xfunc : odef (Func X Y) xmap - yfunc : odef (Func Y X) ymap - onto-iso : {y : Ordinal } → (lty : odef Y y ) → - func-1 ( od→func {X} {Y} {xmap} xfunc ) ( func-1 (od→func yfunc) y ) ≡ y - -open Onto - -onto-restrict : {X Y Z : HOD} → Onto X Y → Z ⊆ Y → Onto X Z -onto-restrict {X} {Y} {Z} onto Z⊆Y = record { - xmap = xmap1 - ; ymap = zmap - ; xfunc = xfunc1 - ; yfunc = zfunc - ; onto-iso = onto-iso1 - } where - xmap1 : Ordinal - xmap1 = od→ord (Select (ord→od (xmap onto)) {!!} ) - zmap : Ordinal - zmap = {!!} - xfunc1 : odef (Func X Z) xmap1 - xfunc1 = {!!} - zfunc : odef (Func Z X) zmap - zfunc = {!!} - onto-iso1 : {z : Ordinal } → (ltz : odef Z z ) → func-1 (od→func xfunc1 ) (func-1 (od→func zfunc ) z ) ≡ z - onto-iso1 = {!!} - - -record Cardinal (X : HOD ) : Set n where - field - cardinal : Ordinal - conto : Onto X (Ord cardinal) - cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto X (Ord y) - -cardinal : (X : HOD ) → Cardinal X -cardinal X = record { - cardinal = sup-o {!!} ( λ x lt → proj1 ( cardinal-p {!!}) ) - ; conto = onto - ; cmax = cmax - } where - cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto X (Ord x) ) ) - cardinal-p x with ODC.p∨¬p O ( Onto X (Ord x) ) - cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } - cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } - S = sup-o {!!} (λ x lt → proj1 (cardinal-p {!!})) - lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → (y o< (osuc S) → Onto X (Ord y))) → - (x o< (osuc S) → Onto X (Ord x) ) - lemma1 x prev with trio< x (osuc S) - lemma1 x prev | tri< a ¬b ¬c with osuc-≡< a - lemma1 x prev | tri< a ¬b ¬c | case1 x=S = ( λ lt → {!!} ) - lemma1 x prev | tri< a ¬b ¬c | case2 x<S = ( λ lt → lemma2 ) where - lemma2 : Onto X (Ord x) - lemma2 with prev {!!} {!!} - ... | t = {!!} - lemma1 x prev | tri≈ ¬a b ¬c = ( λ lt → ⊥-elim ( o<¬≡ b lt )) - lemma1 x prev | tri> ¬a ¬b c = ( λ lt → ⊥-elim ( o<> c lt )) - onto : Onto X (Ord S) - onto with TransFinite {λ x → ( x o< osuc S → Onto X (Ord x) ) } lemma1 S - ... | t = t <-osuc - cmax : (y : Ordinal) → S o< y → ¬ Onto X (Ord y) - cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S} {!!} lemma refl ) where - -- (sup-o< ? {λ x lt → proj1 ( cardinal-p {!!})}{{!!}} ) lemma refl ) where - lemma : proj1 (cardinal-p y) ≡ y - lemma with ODC.p∨¬p O ( Onto X (Ord y) ) - lemma | case1 x = refl - lemma | case2 not = ⊥-elim ( not ontoy ) - - ------ --- All cardinal is ℵ0, since we are working on Countable Ordinal, --- Power ω is larger than ℵ0, so it has no cardinal. - - - + bfun : Ordinal + bfun-isfun : def (Func {!!} {!!} ) bfun + bfun-is1-1 : ? + bfun-isonto : ? + +Card : OD +Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ Bijection a x }
--- a/ordinal.agda Thu Jul 30 17:22:34 2020 +0900 +++ b/ordinal.agda Thu Jul 30 21:45:49 2020 +0900 @@ -220,7 +220,7 @@ ; osuc-≡< = osuc-≡< ; TransFinite = TransFinite1 ; TransFinite1 = TransFinite2 - ; not-limit-p = not-limit + ; Oprev-p = Oprev-p } ; isNext = record { x<nx = x<nx @@ -245,9 +245,12 @@ lemma3 : {n l : Nat} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥ lemma3 (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n - not-limit : (x : Ordinal) → Dec (¬ ((y : Ordinal) → ¬ (x ≡ osuc y))) - not-limit (ordinal lv (Φ lv)) = no (λ not → not (λ y () )) - not-limit (ordinal lv (OSuc lv ox)) = yes (λ not → not (ordinal lv ox) refl ) + open Oprev + Oprev-p : (x : Ordinal) → Dec ( Oprev (Ordinal {suc n}) osuc x ) + Oprev-p (ordinal lv (Φ lv)) = no (λ not → lemma (oprev not) (oprev=x not) ) where + lemma : (x : Ordinal) → osuc x ≡ (ordinal lv (Φ lv)) → ⊥ + lemma x () + Oprev-p (ordinal lv (OSuc lv ox)) = yes record { oprev = ordinal lv ox ; oprev=x = refl } ord1 : Set (suc n) ord1 = Ordinal {suc n} TransFinite1 : { ψ : ord1 → Set (suc n) }