Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 535:b83dde5dbd33
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 23 Apr 2022 18:35:20 +0900 |
parents | c9f80aea598e |
children | c43375ade2c5 |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 23 18:05:12 2022 +0900 +++ b/src/zorn.agda Sat Apr 23 18:35:20 2022 +0900 @@ -460,14 +460,15 @@ SupCond A B _ _ = SUP A B record ZChain ( A : HOD ) {x : Ordinal} (ax : A ∋ * x) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) - (sup : (C : Ordinal ) → IsTotalOrderSet (* C) → Ordinal) (z : Ordinal) : Set (Level.suc n) where + (sup : (C : Ordinal ) → (* C ⊆ A) → IsTotalOrderSet (* C) → Ordinal) (z : Ordinal) : Set (Level.suc n) where field chain : HOD chain⊆A : chain ⊆ A f-total : IsTotalOrderSet chain f-next : {a : Ordinal } → odef chain a → odef chain (f a) is-max : {a b : Ordinal } → (ca : odef chain a ) → odef A b → a o< z - → ( Prev< A (incl chain⊆A (subst (λ k → odef chain k ) (sym &iso) ca)) f ∨ (sup (& chain) (subst (λ k → IsTotalOrderSet k) (sym *iso) f-total) ≡ b )) + → ( Prev< A (incl chain⊆A (subst (λ k → odef chain k ) (sym &iso) ca)) f + ∨ (sup (& chain) (subst (λ k → k ⊆ A) (sym *iso) chain⊆A) (subst (λ k → IsTotalOrderSet k) (sym *iso) f-total) ≡ b )) → * a < * b → odef chain b Zorn-lemma : { A : HOD } @@ -476,6 +477,8 @@ → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → SUP A B ) -- SUP condition → Maximal A Zorn-lemma {A} 0<A PO supP = zorn00 where + supO : (C : Ordinal ) → (* C) ⊆ A → IsTotalOrderSet (* C) → Ordinal + supO C C⊆A TC = & ( SUP.sup ( supP (* C) C⊆A TC )) z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ z01 {a} {b} A∋a A∋b (case1 a=b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋a} (sym a=b) b<a z01 {a} {b} A∋a A∋b (case2 a<b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋b} refl @@ -506,38 +509,38 @@ cf-is-<-monotonic nmx x ax = ⟪ {!!} , {!!} ⟫ cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ - zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A sa f mf {!!} (& A)) → SUP A (ZChain.chain zc) + zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A sa f mf supO (& A)) → SUP A (ZChain.chain zc) zsup f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc ) -- zsup zc f mf = & ( SUP.sup (supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc f mf ) ) ) - A∋zsup : (nmx : ¬ Maximal A ) (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) {!!} (& A)) + A∋zsup : (nmx : ¬ Maximal A ) (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) supO (& A)) → A ∋ * ( & ( SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) )) A∋zsup nmx zc = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) ) - z03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A sa f mf {!!} (& A)) → f (& ( SUP.sup (zsup f mf zc ))) ≡ & (SUP.sup (zsup f mf zc )) + z03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A sa f mf supO (& A)) → f (& ( SUP.sup (zsup f mf zc ))) ≡ & (SUP.sup (zsup f mf zc )) z03 = {!!} - z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) {!!} (& A)) → ⊥ + z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) supO (& A)) → ⊥ z04 nmx zc = z01 {* (cf nmx c)} {* c} {!!} (A∋zsup nmx zc ) (case1 ( cong (*)( z03 (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) (proj1 (cf-is-<-monotonic nmx c ((subst λ k → odef A k ) &iso (A∋zsup nmx zc )))) where c = & (SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc )) -- ZChain is not compatible with the SUP condition - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A sa f mf {!!} y ) - → ZChain A sa f mf {!!} x + ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A sa f mf supO y ) + → ZChain A sa f mf supO x ind f mf x prev with Oprev-p x ... | yes op with ODC.∋-p O A (* x) ... | no ¬Ax = zc1 where -- we have previous ordinal and ¬ A ∋ x, use previous Zchain px = Oprev.oprev op - zc0 : ZChain A sa f mf {!!} (Oprev.oprev op) + zc0 : ZChain A sa f mf supO (Oprev.oprev op) zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) - zc1 : ZChain A sa f mf {!!} x + zc1 : ZChain A sa f mf supO x zc1 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; is-max = {!!} } ... | yes ax = zc4 where -- we have previous ordinal and A ∋ x px = Oprev.oprev op - zc0 : ZChain A sa f mf {!!} (Oprev.oprev op) + zc0 : ZChain A sa f mf supO (Oprev.oprev op) zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) -- x is in the previous chain, use the same -- x has some y which y < x ∧ f y ≡ x -- x has no y which y < x - zc4 : ZChain A sa f mf {!!} x + zc4 : ZChain A sa f mf supO x zc4 = record { chain = {!!} ; chain⊆A = {!!} ; f-total = {!!} ; f-next = {!!} ; is-max = {!!} } ind f mf x prev | no ¬ox with trio< (& A) x --- limit ordinal case ... | tri< a ¬b ¬c = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 @@ -561,7 +564,7 @@ nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ - zorn03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → ZChain A sa f mf {!!} (& A) + zorn03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → ZChain A sa f mf supO (& A) zorn03 f mf = TransFinite (ind f mf) (& A) -- usage (see filter.agda )