Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 27:bade0a35fdd9
OD, HOD, TC
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 19 May 2019 15:30:04 +0900 (2019-05-19) |
parents | a53ba59c5bda |
children | f36e40d5d2c3 |
files | constructible-set.agda |
diffstat | 1 files changed, 39 insertions(+), 71 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Sat May 18 22:40:06 2019 +0900 +++ b/constructible-set.agda Sun May 19 15:30:04 2019 +0900 @@ -25,7 +25,7 @@ open Ordinal -_o<_ : {n : Level} ( x y : Ordinal ) → Set (suc n) +_o<_ : {n : Level} ( x y : Ordinal ) → Set n _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) open import Data.Nat.Properties @@ -104,6 +104,16 @@ _o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) a o≤ b = (a ≡ b) ∨ ( a o< b ) +ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z +ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ ) +ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂ +... | refl = case1 x₁ +ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂) with d<→lv x₁ +... | refl = case1 x₂ +ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂ +... | refl | refl = case2 ( orddtrans x₁ x₂ ) + + trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_ trio< a b with <-cmp (lv a) (lv b) trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where @@ -169,80 +179,38 @@ -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' -record ConstructibleSet {n : Level} : Set (suc n) where - field - α : Ordinal {suc n} - constructible : Ordinal {suc n} → Set n - -- constructible : (x : Ordinal {suc n} ) → x o< α → Set n - -open ConstructibleSet +-- Ordinal Definable Set -_∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set (suc n) -a ∋ x = ( α x o< α a ) ∧ constructible a ( α x ) - -c∅ : {n : Level} → ConstructibleSet -c∅ {n} = record {α = o∅ ; constructible = λ x → Lift n ⊥ } - -record SupR {n m : Level} {S : Set n} ( _≤_ : S → S → Set m ) (ψ : S → S ) (X : S) : Set ((suc n) ⊔ m) where +record OD {n : Level} : Set (suc n) where field - sup : S - smax : ∀ { x : S } → x ≤ X → ψ x ≤ sup - suniq : {max : S} → ( ∀ { x : S } → x ≤ X → ψ x ≤ max ) → max ≤ sup + α : Ordinal {n} + def : (x : Ordinal {n} ) → x o< α → Set n -open SupR +open OD +open import Data.Unit -record dom-ψ {n m : Level} (X : ConstructibleSet {n}) (ψ : ConstructibleSet {n} → ConstructibleSet {n} ) : Set (suc (suc n) ⊔ suc m) where - field - αψ : Ordinal {suc n} - inψ : (x : Ordinal {suc n} ) → Set m - X∋x : (x : ConstructibleSet {n} ) → inψ (α x) → X ∋ x - vψ : (x : Ordinal {suc n} ) → inψ x → ConstructibleSet {n} - cset≡ψ : (x : ConstructibleSet {n} ) → (t : inψ (α x) ) → x ≡ ψ ( vψ (α x) t ) +postulate -- this is proved by Godel numbering of def + _c<_ : {n : Level } → (x y : OD {n} ) → Set n + ODpre : {n : Level} → IsPreorder {suc n} {suc n} {n} _≡_ _c<_ -open dom-ψ - -postulate - ψ→C : {n m : Level} (X : ConstructibleSet {n}) (ψ : ConstructibleSet {n} → ConstructibleSet {n} ) → dom-ψ {n} {m} X ψ - -_⊆_ : {n : Level} → ( A B : ConstructibleSet ) → ∀{ x : ConstructibleSet } → Set (suc n) -_⊆_ A B {x} = A ∋ x → B ∋ x +-- o∋ : {n : Level} → {A : Ordinal {n}} → (OrdinalDefinable {n} A ) → (x : Ordinal {n} ) → (x o< A) → Set n +-- o∋ a x x<A = def a x x<A -suptraverse : {n : Level} → (X : ConstructibleSet {n}) ( max : ConstructibleSet {n}) ( ψ : ConstructibleSet {n} → ConstructibleSet {n}) → ConstructibleSet {n} -suptraverse X max ψ = {!!} - -Sup : {n : Level } → (ψ : ConstructibleSet → ConstructibleSet ) → (X : ConstructibleSet) → SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X -sup (Sup {n} ψ X ) = suptraverse X (c∅ {n}) ψ -smax (Sup ψ X ) = {!!} -suniq (Sup ψ X ) = {!!} - -open import Data.Unit -open SupR +-- TC u : Transitive Closure of OD u +-- +-- all elements of u or elements of elements of u, etc... +-- +-- TC Zero = u +-- TC (suc n) = ∪ (TC n) +-- +-- TC u = TC ω u = ∪ ( TC n ) n ∈ ω +-- +-- u ∪ ( ∪ u ) ∪ ( ∪ (∪ u ) ) .... +-- +-- HOD = {x | TC x ⊆ OD } ⊆ OD +-- -ConstructibleSet→ZF : {n : Level} → ZF {suc n} {suc n} -ConstructibleSet→ZF {n} = record { - ZFSet = ConstructibleSet - ; _∋_ = _∋_ - ; _≈_ = _≡_ - ; ∅ = c∅ - ; _,_ = _,_ - ; Union = Union - ; Power = {!!} - ; Select = Select - ; Replace = Replace - ; infinite = {!!} - ; isZF = {!!} - } where - Select : (X : ConstructibleSet {n}) → (ConstructibleSet {n} → Set (suc n)) → ConstructibleSet {n} - Select X ψ = record { α = α X ; constructible = λ x → select x } where - select : Ordinal → Set n - select x with ψ (record { α = x ; constructible = λ x → constructible X x }) - ... | t = Lift n ⊤ - Replace : (X : ConstructibleSet {n} ) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet - Replace X ψ = record { α = αψ {n} {suc (suc n)} (ψ→C X ψ) ; constructible = λ x → inψ (ψ→C X ψ) x } - _,_ : ConstructibleSet {n} → ConstructibleSet → ConstructibleSet - a , b = record { α = maxα (α a) (α b) ; constructible = a∨b } where - a∨b : Ordinal {suc n} → Set n - a∨b x with (x ≡ α a ) ∨ ( x ≡ α b ) - ... | t = Lift n ⊤ - Union : ConstructibleSet → ConstructibleSet - Union a = {!!} +record HOD {n : Level} : Set (suc n) where + field + hod : OD {n} + tc : ?