Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1059:bd2a258f309c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Dec 2022 17:41:17 +0900 |
parents | 12ce8d0224d2 |
children | a09f5e728f92 |
files | src/zorn.agda |
diffstat | 1 files changed, 72 insertions(+), 133 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Dec 10 09:56:32 2022 +0900 +++ b/src/zorn.agda Sat Dec 10 17:41:17 2022 +0900 @@ -338,10 +338,9 @@ asupf : {x : Ordinal } → odef A (supf x) supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y supfmax : {x : Ordinal } → z o< x → supf x ≡ supf z + zo≤sz : {x : Ordinal } → x o≤ z → x o≤ supf x is-minsup : {x : Ordinal } → (x≤z : x o≤ z) → IsMinSUP A (UnionCF A f ay supf x) (supf x) - sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z - → IsSUP A (UnionCF A f ay supf b) b → supf b ≡ b chain : HOD chain = UnionCF A f ay supf z @@ -430,38 +429,6 @@ f-total {a} {b} ⟪ uaa , ch-init fca ⟫ ⟪ uab , ch-init fcb ⟫ = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso (fcn-cmp y f mf fca fcb ) - supf-idem : {b : Ordinal } → b o≤ z → supf b o≤ z → supf (supf b) ≡ supf b - supf-idem {b} b≤z sfb≤x = z52 where - z54 : {w : Ordinal} → odef (UnionCF A f ay supf (supf b)) w → (w ≡ supf b) ∨ (w << supf b) - z54 {w} ⟪ aw , ch-init fc ⟫ = fcy<sup b≤z fc - z54 {w} ⟪ aw , ch-is-sup u u<x su=u fc ⟫ = order b≤z (subst (λ k → k o< supf b) (sym su=u) u<x) fc where - u<b : u o< b - u<b = supf-inject (subst (λ k → k o< supf b ) (sym (su=u)) u<x ) - z52 : supf (supf b) ≡ supf b - z52 = sup=u asupf sfb≤x record { ax = asupf ; x≤sup = z54 } - - x≤supfx : {x : Ordinal } → x o≤ z → supf x o≤ z → x o≤ supf x - x≤supfx {x} x≤z sx≤z with x<y∨y≤x (supf x) x - ... | case2 le = le - ... | case1 spx<px = ⊥-elim ( <<-irr z45 (proj1 ( mf< (supf x) asupf ))) where - z46 : odef (UnionCF A f ay supf x) (f (supf x)) - z46 = ⟪ proj2 ( mf (supf x) asupf ) , ch-is-sup (supf x) spx<px z47 (fsuc _ (init asupf z47 )) ⟫ where - z47 : supf (supf x) ≡ supf x - z47 = supf-idem x≤z sx≤z - z45 : f (supf x) ≤ supf x - z45 = IsMinSUP.x≤sup (is-minsup x≤z ) z46 - - sup=u0 : {b : Ordinal} → (ab : odef A b) → b o≤ z - → IsSUP A (UnionCF A f ay supf b) b → supf b ≡ b - sup=u0 {b} ab b≤z is-sup with trio< (supf b) b - ... | tri< sb<b ¬b ¬c = ⊥-elim ( o≤> z47 sb<b ) where - z47 : b o≤ supf b - z47 = x≤supfx b≤z ? - ... | tri≈ ¬a b ¬c = b - ... | tri> ¬a ¬b b<sb = ⊥-elim ( o≤> z48 b<sb ) where - z48 : supf b o≤ b - z48 = IsMinSUP.minsup (is-minsup b≤z) ab (λ ux → IsSUP.x≤sup is-sup ux ) - supf-mono< : {a b : Ordinal } → b o≤ z → supf a o< supf b → supf a << supf b supf-mono< {a} {b} b≤z sa<sb with order {a} {b} b≤z sa<sb (init asupf refl) ... | case2 lt = lt @@ -492,6 +459,40 @@ z ≤⟨ z≤sa ⟩ supf a ∎ )) where open o≤-Reasoning O + sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z + → IsSUP A (UnionCF A f ay supf b) b → supf b ≡ b + sup=u {b} ab b≤z is-sup = z50 where + z48 : supf b o≤ b + z48 = IsMinSUP.minsup (is-minsup b≤z) ab (λ ux → IsSUP.x≤sup is-sup ux ) + z50 : supf b ≡ b + z50 with trio< (supf b) b + ... | tri< sb<b ¬b ¬c = ⊥-elim ( o≤> z47 sb<b ) where + z47 : b o≤ supf b + z47 = zo≤sz b≤z + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b b<sb = ⊥-elim ( o≤> z48 b<sb ) + + supf-idem : {b : Ordinal } → b o≤ z → supf b o≤ z → supf (supf b) ≡ supf b + supf-idem {b} b≤z sfb≤x = z52 where + z54 : {w : Ordinal} → odef (UnionCF A f ay supf (supf b)) w → (w ≡ supf b) ∨ (w << supf b) + z54 {w} ⟪ aw , ch-init fc ⟫ = fcy<sup b≤z fc + z54 {w} ⟪ aw , ch-is-sup u u<x su=u fc ⟫ = order b≤z (subst (λ k → k o< supf b) (sym su=u) u<x) fc where + u<b : u o< b + u<b = supf-inject (subst (λ k → k o< supf b ) (sym (su=u)) u<x ) + z52 : supf (supf b) ≡ supf b + z52 = sup=u asupf sfb≤x record { ax = asupf ; x≤sup = z54 } + + x≤supfx : {x : Ordinal } → x o≤ z → supf x o≤ z → x o≤ supf x + x≤supfx {x} x≤z sx≤z with x<y∨y≤x (supf x) x + ... | case2 le = le + ... | case1 spx<px = ⊥-elim ( <<-irr z45 (proj1 ( mf< (supf x) asupf ))) where + z46 : odef (UnionCF A f ay supf x) (f (supf x)) + z46 = ⟪ proj2 ( mf (supf x) asupf ) , ch-is-sup (supf x) spx<px z47 (fsuc _ (init asupf z47 )) ⟫ where + z47 : supf (supf x) ≡ supf x + z47 = supf-idem x≤z sx≤z + z45 : f (supf x) ≤ supf x + z45 = IsMinSUP.x≤sup (is-minsup x≤z ) z46 + record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf< : <-monotonic-f A f) {y : Ordinal} (ay : odef A y) (zc : ZChain A f mf< ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where supf = ZChain.supf zc @@ -879,8 +880,8 @@ m14 {z} uz = MinSUP.x≤sup sup1 (case1 uz) zc41 : ZChain A f mf< ay x - zc41 = record { supf = supf1 ; sup=u = sup=u ; asupf = asupf1 ; supf-mono = supf1-mono ; order = order - ; supfmax = supfmax ; is-minsup = is-minsup ; cfcs = cfcs } where + zc41 = record { supf = supf1 ; asupf = asupf1 ; supf-mono = supf1-mono ; order = order + ; zo≤sz = zo≤sz ; supfmax = supfmax ; is-minsup = is-minsup ; cfcs = cfcs } where supf1 : Ordinal → Ordinal supf1 z with trio< z px @@ -1117,90 +1118,6 @@ u≤px : u o≤ px u≤px = ordtrans u<x z≤px - sup=u : {b : Ordinal} (ab : odef A b) → - b o≤ x → IsSUP A (UnionCF A f ay supf1 b) b → supf1 b ≡ b - sup=u {b} ab b≤x is-sup with trio< b px - ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) zc40 where - zc42 : {w : Ordinal} → odef (UnionCF A f ay (ZChain.supf zc) b) w → w ≤ b - zc42 {w} ⟪ ua , ch-init fc ⟫ = IsSUP.x≤sup is-sup ⟪ ua , ch-init fc ⟫ - zc42 {w} ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = IsSUP.x≤sup is-sup ⟪ ua , - ch-is-sup u u<x (trans (sf1=sf0 zc44) su=u) (fcpu fc zc44) ⟫ where - zc44 : u o≤ px - zc44 = ordtrans u<x (o<→≤ a) - zc40 : IsSUP A (UnionCF A f ay supf0 b) b - zc40 = record { ax = ab ; x≤sup = zc42 } - ... | tri≈ ¬a b=px ¬c = ZChain.sup=u zc ab (o≤-refl0 b=px) record { ax = ab ; x≤sup = zc42 } where - zc42 : {w : Ordinal} → odef (UnionCF A f ay (ZChain.supf zc) b) w → w ≤ b - zc42 {w} ⟪ ua , ch-init fc ⟫ = IsSUP.x≤sup is-sup ⟪ ua , ch-init fc ⟫ - zc42 {w} ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = IsSUP.x≤sup is-sup ⟪ ua , - ch-is-sup u u<x (trans (sf1=sf0 zc44) su=u) (fcpu fc zc44) ⟫ where - zc44 : u o≤ px - zc44 = o<→≤ ( subst (λ k → u o< k ) b=px u<x ) - ... | tri> ¬a ¬b px<b = trans zc36 x=b where - x=b : x ≡ b - x=b with osuc-≡< b≤x - ... | case1 eq = sym (eq) - ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) - zc31 : sp1 o≤ b - zc31 = MinSUP.minsup sup1 ab zc32 where - zc32 : {w : Ordinal } → odef pchainpx w → (w ≡ b) ∨ (w << b) - zc32 {w} (case1 ⟪ ua , ch-init fc ⟫ ) = IsSUP.x≤sup is-sup ⟪ ua , ch-init fc ⟫ - zc32 {w} (case1 ⟪ ua , ch-is-sup u u<x su=u fc ⟫ ) = IsSUP.x≤sup is-sup ⟪ ua , ch-is-sup u z01 z02 z03 ⟫ where - z01 : u o< b - z01 = ordtrans u<x (subst (λ k → px o< k ) x=b px<x ) - z02 : supf1 u ≡ u - z02 = trans (sf1=sf0 (o<→≤ u<x)) su=u - z03 : FClosure A f (supf1 u) w - z03 = fcpu fc (o<→≤ u<x) - zc32 {w} (case2 fc) = IsSUP.x≤sup is-sup ⟪ A∋fc _ f mf (proj1 fc) , ch-is-sup (supf0 px) sa<x su=u fc1 ⟫ where - su=u : supf1 (supf0 px) ≡ supf0 px - su=u = trans (sf1=sf0 (zc-b<x _ (proj2 fc))) ( ZChain.supf-idem zc o≤-refl (zc-b<x _ (proj2 fc)) ) - fc1 : FClosure A f (supf1 (supf0 px)) w - fc1 = subst (λ k → FClosure A f k w ) (sym su=u) (proj1 fc) - sa<x : supf0 px o< b - sa<x = subst (λ k → supf0 px o< k ) x=b ( proj2 fc) - zc36 : sp1 ≡ x - zc36 with osuc-≡< zc31 - ... | case1 eq = trans eq (sym x=b) - ... | case2 sp1<b = ⊥-elim ( <<-irr zc40 (proj1 ( mf< (supf0 px) (ZChain.asupf zc))) ) where - -- sp1 o< x → ⊥ - -- supf0 px o≤ sp1 o< x → supf0 px o≤ px - -- px o≤ supf0 px → px ≡ spuf0 px o≤ spuf1 x o< x - -- px ≡ supf1 x - sp1<x : sp1 o< x - sp1<x = subst (λ k → sp1 o< k ) (sym x=b) sp1<b - zc38 : supf0 px o≤ px - zc38 = begin - supf0 px ≡⟨ sym (sf1=sf0 o≤-refl) ⟩ - supf1 px ≤⟨ supf1-mono (o<→≤ px<x) ⟩ - supf1 x ≡⟨ sf1=sp1 px<x ⟩ - sp1 ≤⟨ zc-b<x _ sp1<x ⟩ - px ∎ where open o≤-Reasoning O - zc37 : supf0 px ≡ px - zc37 with trio< (supf0 px) px - ... | tri< a ¬b ¬c = ⊥-elim ( o≤> (ZChain.x≤supfx zc o≤-refl zc38) a ) - ... | tri≈ ¬a b ¬c = b - ... | tri> ¬a ¬b c = ⊥-elim ( o≤> zc38 c ) - zc44 : sp1 o≤ supf0 px - zc44 = begin - sp1 ≤⟨ zc-b<x _ sp1<x ⟩ - px ≡⟨ sym zc37 ⟩ - supf0 px ∎ where open o≤-Reasoning O - zc45 : supf0 px o≤ sp1 - zc45 = begin - supf0 px ≡⟨ sym (sf1=sf0 o≤-refl) ⟩ - supf1 px ≤⟨ supf1-mono (o<→≤ px<x) ⟩ - supf1 x ≡⟨ sf1=sp1 px<x ⟩ - sp1 ∎ where open o≤-Reasoning O - zc39 : supf0 px ≡ sp1 - zc39 with trio< (supf0 px) sp1 - ... | tri< a ¬b ¬c = ⊥-elim ( o≤> zc44 a ) --- sp1 o< x ≡ osuc px ≡ osuc (supf0 px) - ... | tri≈ ¬a b ¬c = b - ... | tri> ¬a ¬b c = ⊥-elim ( o≤> zc45 c ) --- supf0 px o≤ supf1 x ≡ sp1 - zc40 : f (supf0 px) ≤ supf0 px - zc40 = subst (λ k → f (supf0 px) ≤ k ) (sym zc39) - ( MinSUP.x≤sup sup1 (case2 ⟪ fsuc _ (init (ZChain.asupf zc) refl) , subst (λ k → k o< x) (sym zc37) px<x ⟫ )) - supfeq1 : {a b : Ordinal } → a o≤ x → b o≤ x → UnionCF A f ay supf1 a ≡ UnionCF A f ay supf1 b → supf1 a ≡ supf1 b supfeq1 {a} {b} a≤z b≤z ua=ub with trio< (supf1 a) (supf1 b) ... | tri< sa<sb ¬b ¬c = ⊥-elim ( o≤> ( @@ -1226,6 +1143,37 @@ x ≤⟨ z≤sa ⟩ supf1 a ∎ )) where open o≤-Reasoning O + + zo≤sz : {z : Ordinal} → z o≤ x → z o≤ supf1 z + zo≤sz {z} z≤x with osuc-≡< z≤x + ... | case2 z<x = subst (λ k → z o≤ k) (sym (sf1=sf0 (zc-b<x _ z<x ))) (ZChain.zo≤sz zc (zc-b<x _ z<x )) + ... | case1 refl with osuc-≡< (supf1-mono (o<→≤ (px<x))) -- px o≤ supf1 px o≤ supf1 x ≡ sp1 → x o≤ sp1 + ... | case2 lt = begin + x ≡⟨ sym (Oprev.oprev=x op) ⟩ + osuc px ≤⟨ osucc (ZChain.zo≤sz zc o≤-refl) ⟩ + osuc (supf0 px) ≡⟨ sym (cong osuc (sf1=sf0 o≤-refl )) ⟩ + osuc (supf1 px) ≤⟨ osucc lt ⟩ + supf1 x ∎ where open o≤-Reasoning O + ... | case1 spx=sx with osuc-≡< ( ZChain.zo≤sz zc o≤-refl ) + ... | case2 lt = begin + x ≡⟨ sym (Oprev.oprev=x op) ⟩ + osuc px ≤⟨ osucc lt ⟩ + supf0 px ≡⟨ sym (sf1=sf0 o≤-refl) ⟩ + supf1 px ≤⟨ supf1-mono (o<→≤ px<x) ⟩ + supf1 x ∎ where open o≤-Reasoning O + ... | case1 px=spx = ⊥-elim ( <<-irr zc40 (proj1 ( mf< (supf0 px) (ZChain.asupf zc))) ) where + zc37 : supf0 px ≡ px + zc37 = sym px=spx + zc39 : supf0 px ≡ sp1 + zc39 = begin + supf0 px ≡⟨ sym (sf1=sf0 o≤-refl) ⟩ + supf1 px ≡⟨ spx=sx ⟩ + supf1 x ≡⟨ sf1=sp1 px<x ⟩ + sp1 ∎ where open ≡-Reasoning + zc40 : f (supf0 px) ≤ supf0 px + zc40 = subst (λ k → f (supf0 px) ≤ k ) (sym zc39) + ( MinSUP.x≤sup sup1 (case2 ⟪ fsuc _ (init (ZChain.asupf zc) refl) , subst (λ k → k o< x) (sym zc37) px<x ⟫ )) + order : {a b : Ordinal} {w : Ordinal} → b o≤ x → supf1 a o< supf1 b → FClosure A f (supf1 a) w → w ≤ supf1 b order {a} {b} {w} b≤x sa<sb fc = z20 where @@ -1285,15 +1233,15 @@ ... | no lim with trio< x o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) - ... | tri≈ ¬a b ¬c = record { supf = λ _ → MinSUP.sup (ysup f mf ay) ; sup=u = ? ; asupf = MinSUP.as (ysup f mf ay) + ... | tri≈ ¬a b ¬c = record { supf = λ _ → MinSUP.sup (ysup f mf ay) ; asupf = MinSUP.as (ysup f mf ay) ; supf-mono = λ _ → o≤-refl ; order = λ _ s<s → ⊥-elim ( o<¬≡ refl s<s ) - ; supfmax = λ _ → refl ; is-minsup = ? ; cfcs = ? } where + ; zo≤sz = ? ; supfmax = λ _ → refl ; is-minsup = ? ; cfcs = ? } where mf : ≤-monotonic-f A f mf x ax = ⟪ case2 mf00 , proj2 (mf< x ax ) ⟫ where mf00 : * x < * (f x) mf00 = proj1 ( mf< x ax ) - ... | tri> ¬a ¬b 0<x = record { supf = supf1 ; sup=u = ? ; asupf = ? ; supf-mono = supf-mono ; order = ? - ; supfmax = ? ; is-minsup = ? ; cfcs = cfcs } where + ... | tri> ¬a ¬b 0<x = record { supf = supf1 ; asupf = ? ; supf-mono = supf-mono ; order = ? + ; zo≤sz = λ _ → ? ; supfmax = ? ; is-minsup = ? ; cfcs = cfcs } where -- mf : ≤-monotonic-f A f -- mf x ax = ? -- ⟪ case2 ( proj1 (mf< x ax)) , proj2 (mf< x ax ) ⟫ will result memory exhaust @@ -1474,15 +1422,6 @@ ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ ... | ⟪ az , ch-is-sup u u<x su=u fc ⟫ = ⟪ az , ch-is-sup u ? ? ? ⟫ - sup=u : {b : Ordinal} (ab : odef A b) → - b o≤ x → IsMinSUP A (UnionCF A f ay supf1 b) b → supf1 b ≡ b - sup=u {b} ab b≤x is-sup with osuc-≡< b≤x - ... | case1 b=x = ? where - zc31 : spu o≤ b - zc31 = MinSUP.minsup usup ab zc32 where - zc32 : {w : Ordinal } → odef pchainx w → (w ≡ b) ∨ (w << b) - zc32 = ? - ... | case2 b<x = trans (sf1=sf ?) (ZChain.sup=u (pzc (ob<x lim b<x)) ab ? ? ) --- --- the maximum chain has fix point of any ≤-monotonic function ---