Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 677:be3eb95d50d9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Jul 2022 17:23:41 +0900 |
parents | 9ab62416dbdd |
children | fca33c0e9a88 |
files | src/zorn.agda |
diffstat | 1 files changed, 4 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jul 09 17:10:50 2022 +0900 +++ b/src/zorn.agda Sat Jul 09 17:23:41 2022 +0900 @@ -262,8 +262,9 @@ field psup : Ordinal → Ordinal psup<z : (x : Ordinal ) → psup x o< & A - chainf : (x w : Ordinal) → x o< z → Chain A f mf ay (psup x ) w - psup-mono : (x y : Ordinal) → x o≤ y → psup x o≤ psup y + chainf : (x : Ordinal) → x o< z → HOD + is-chain : (x w : Ordinal) → (x<z : x o< z) → odef (chainf x x<z ) w → Chain A f mf ay (psup x ) w + psup-mono : (x y : Ordinal) → x o≤ y → chainf x ? ⊆' chainf y ? ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) → (z : Ordinal) → ( ( x : Ordinal ) → ZChain1 A f mf ay x ) → HOD @@ -503,33 +504,7 @@ no-extenion : ( {a b z : Ordinal} → (z<x : z o< x) → odef (ZChain.chain (zc z<x )) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain (zc z<x) ) ab f ∨ IsSup A (ZChain.chain (zc z<x) ) ab → * a < * b → odef (ZChain.chain (zc ?) ) b ) → ZChain A f mf ay zc0 x - no-extenion is-max with o≤? x (& A) - ... | no n = ? where - ... | yes x≤a with ZChain1.chainf (zc0 (& A)) ? ? ? - ... | ch-init _ _ x=0 fc = ? - ... | ch-is-sup ax is-sup fc = ? where - -- = record { chain⊆A = {!!} -- subst (λ k → k ⊆' A ) {!!} (ZChain.chain⊆A zc) - -- ; initial = subst (λ k → {y₁ : Ordinal} → odef k y₁ → * y ≤ * y₁ ) {!!} (ZChain.initial zc) - -- ; f-next = subst (λ k → {a : Ordinal} → odef k a → odef k (f a) ) {!!} (ZChain.f-next zc) - -- ; f-total = {!!} - -- ; chain∋init = subst (λ k → odef k y ) {!!} (ZChain.chain∋init zc) - -- ; is-max = subst (λ k → {a b : Ordinal} → odef k a → b o< osuc x → (ab : odef A b) → - -- HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) {!!} is-max } where - supf0 : Ordinal → HOD - supf0 z with trio< z x - ... | tri< a ¬b ¬c = ? - ... | tri≈ ¬a b ¬c = ZChain.chain (zc ?) - ... | tri> ¬a ¬b c = ZChain.chain (zc ?) - seq : ZChain.chain (zc ?) ≡ supf0 x - seq with trio< x x - ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) - ... | tri≈ ¬a b ¬c = refl - ... | tri> ¬a ¬b c = refl - seq<x : {b : Ordinal } → b o< x → ? -- supf b ≡ supf0 b - seq<x {b} b<x with trio< b x - ... | tri< a ¬b ¬c = refl - ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) - ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) + no-extenion is-max = ? zc4 : ZChain A f mf ay zc0 x zc4 with o≤? x o∅