Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 311:bf01e924e62e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Jun 2020 11:08:22 +0900 |
parents | 73a2a8ec9603 |
children | c1581ed5f38b |
files | OD.agda |
diffstat | 1 files changed, 12 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jun 30 08:55:12 2020 +0900 +++ b/OD.agda Tue Jun 30 11:08:22 2020 +0900 @@ -222,9 +222,6 @@ OPwr : (A : HOD ) → HOD OPwr A = Ord ( sup-o A ( λ x A∋x → od→ord ( ZFSubset A (ord→od x)) ) ) --- _⊆_ : ( A B : HOD ) → ∀{ x : HOD } → Set n --- _⊆_ A B {x} = A ∋ x → B ∋ x - record _⊆_ ( A B : HOD ) : Set (suc n) where field incl : { x : HOD } → A ∋ x → B ∋ x @@ -250,9 +247,6 @@ ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (ord→od oy) ε-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (ord→od oy)} induction oy --- minimal-2 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (od→ord y)) ∧ (odef x (od→ord y) ) --- minimal-2 x ne y = contra-position ( ε-induction (λ {z} ind → {!!} ) x ) ( λ p → {!!} ) - HOD→ZF : ZF HOD→ZF = record { ZFSet = HOD @@ -271,7 +265,7 @@ Select : (X : HOD ) → ((x : HOD ) → Set n ) → HOD Select X ψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( ord→od x )) } ; odmax = odmax X ; <odmax = λ y → <odmax X (proj1 y) } Replace : HOD → (HOD → HOD) → HOD - Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋x → od→ord (ψ (ord→od x)))) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) + Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → od→ord (ψ (ord→od y)))) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y))} Union : HOD → HOD @@ -353,12 +347,10 @@ proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } - sup-od : ( HOD → HOD ) → HOD - sup-od = {!!} - sup-c< : ( ψ : HOD → HOD ) → ∀ {x : HOD } → def (od ( sup-od ψ )) (od→ord ( ψ x )) - sup-c< = {!!} + sup-c< : (ψ : HOD → HOD) → {X x : HOD} → X ∋ x → od→ord (ψ x) o< (sup-o X (λ y X∋y → od→ord (ψ (ord→od y)))) + sup-c< ψ {X} {x} lt = subst (λ k → od→ord (ψ k) o< _ ) oiso (sup-o< X lt ) replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace X ψ ∋ ψ x - replacement← {ψ} X x lt = record { proj1 = {!!} ; proj2 = lemma } where -- sup-c< ψ {x} + replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {X} {x} lt ; proj2 = lemma } where lemma : odef (in-codomain X ψ) (od→ord (ψ x)) lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} )) replacement→ : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y)) @@ -401,8 +393,10 @@ lemma1 : {a : Ordinal } { t : HOD } → (eq : ZFSubset (Ord a) t =h= t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t lemma1 {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq )) + lemma2 : def (od (Ord a)) (od→ord t) + lemma2 = {!!} lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (Ord a) (λ x lt → od→ord (ZFSubset (Ord a) (ord→od x))) - lemma = {!!} -- sup-o< + lemma = sup-o< _ lemma2 -- -- Every set in HOD is a subset of Ordinals, so make OPwr (Ord (od→ord A)) first @@ -425,7 +419,7 @@ lemma5 {y} eq not = (lemma3 (ord→od y) eq) not power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t - power← A t t→A = record { proj1 = {!!} ; proj2 = lemma2 } where + power← A t t→A = record { proj1 = lemma1 ; proj2 = lemma2 } where a = od→ord A lemma0 : {x : HOD} → t ∋ x → Ord a ∋ x lemma0 {x} t∋x = c<→o< (t→A t∋x) @@ -439,14 +433,17 @@ ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩ t ∎ + lemma7 : def (od (OPwr (Ord (od→ord A)))) (od→ord t) + lemma7 = {!!} lemma1 : od→ord t o< sup-o (OPwr (Ord (od→ord A))) (λ x lt → od→ord (A ∩ (ord→od x))) lemma1 = subst (λ k → od→ord k o< sup-o (OPwr (Ord (od→ord A))) (λ x lt → od→ord (A ∩ (ord→od x)))) - lemma4 {!!} -- (sup-o< {λ x → od→ord (A ∩ x)} ) + lemma4 (sup-o< (OPwr (Ord (od→ord A))) lemma7 ) lemma2 : odef (in-codomain (OPwr (Ord (od→ord A))) (_∩_ A)) (od→ord t) lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t)) lemma6 = cong ( λ k → od→ord k ) (==→o≡ (subst (λ k → t =h= (A ∩ k)) (sym oiso) ( ∩-≡ t→A ))) + ord⊆power : (a : Ordinal) → (Ord (osuc a)) ⊆ (Power (Ord a)) ord⊆power a = record { incl = λ {x} lt → power← (Ord a) x (lemma lt) } where lemma : {x y : HOD} → od→ord x o< osuc a → x ∋ y → Ord a ∋ y