Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 406:bf409d31184c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Jul 2020 17:48:28 +0900 |
parents | 85b328d3b96b |
children | 349d4e734403 |
files | OD.agda |
diffstat | 1 files changed, 11 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jul 28 14:15:33 2020 +0900 +++ b/OD.agda Tue Jul 28 17:48:28 2020 +0900 @@ -498,9 +498,17 @@ -- postulate f-extensionality : { n m : Level} → HE.Extensionality n m ω-prev-eq1 : {x y : Ordinal} → od→ord (Union (ord→od y , (ord→od y , ord→od y))) ≡ od→ord (Union (ord→od x , (ord→od x , ord→od x))) → ¬ (x o< y) -ω-prev-eq1 {x} {y} eq not with eq→ (ord→== eq) {od→ord (ord→od y , ord→od y)} (λ not2 → not2 (od→ord (ord→od y , ord→od y)) - record { proj1 = case2 refl ; proj2 = subst (λ k → odef k (od→ord (ord→od y))) {!!} (case1 refl) } ) -... | t = {!!} +ω-prev-eq1 {x} {y} eq x<y = eq→ (ord→== eq) {od→ord (ord→od y)} (λ not2 → not2 (od→ord (ord→od y , ord→od y)) + record { proj1 = case2 refl ; proj2 = subst (λ k → odef k (od→ord (ord→od y))) (sym oiso) (case1 refl)} ) (λ u → lemma u ) where + lemma : (u : Ordinal) → ¬ def (od (ord→od x , (ord→od x , ord→od x))) u ∧ def (od (ord→od u)) (od→ord (ord→od y)) + lemma u t with proj1 t + lemma u t | case1 u=x = o<> (c<→o< {ord→od y} {ord→od u} (proj2 t)) (subst₂ (λ j k → j o< k ) + (trans (sym diso) (trans (sym u=x) (sym diso)) ) (sym diso) x<y ) -- x ≡ od→ord (ord→od u) + lemma u t | case2 u=xx = o<> x<y (subst (λ k → k o< x ) diso {!!} ) + -- x < y < u = (x , x ) + --(ordtrans {!!} (subst₂ (λ j k → j o< k ) {!!} {!!} (c<→o< {ord→od y} {ord→od u} (proj2 t)) ) )) where + -- lemma1 : od→ord (ord→od u) o< x + -- lemma1 = {!!} ω-prev-eq : {x y : Ordinal} → od→ord (Union (ord→od y , (ord→od y , ord→od y))) ≡ od→ord (Union (ord→od x , (ord→od x , ord→od x))) → x ≡ y ω-prev-eq {x} {y} eq with trio< x y