Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 524:c02c82656063
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 18 Apr 2022 01:33:07 +0900 |
parents | f351c183e712 |
children | dea970e4526e |
files | src/zorn.agda |
diffstat | 1 files changed, 24 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Apr 18 00:11:24 2022 +0900 +++ b/src/zorn.agda Mon Apr 18 01:33:07 2022 +0900 @@ -368,12 +368,11 @@ all-climb-case : { A : HOD } → (0<A : o∅ o< & A) → IsPartialOrderSet A → (( x : Ordinal ) → (ax : odef A (& (* x))) → OSup> A ax ) - → InFiniteIChain A (& A) (d→∋ A (ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) )) -all-climb-case {A} 0<A PO climb = record { c-infinite = ac00 ; chain<x = ac01 } where - x = ODC.minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A)) - ax = ODC.x∋minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A)) + → (x : HOD) ( ax : A ∋ x ) + → InFiniteIChain A (& A) (d→∋ A ax) +all-climb-case {A} 0<A PO climb x ax = record { c-infinite = ac00 ; chain<x = ac01 } where B = IChainSet A ax - ac01 : (y : Ordinal) → odef (IChainSet A (d→∋ A (ODC.x∋minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A))))) y → y o< & A + ac01 : (y : Ordinal) → odef (IChainSet A (d→∋ A ax)) y → y o< & A ac01 y ⟪ ay , _ ⟫ = subst (λ k → k o< & A ) &iso (c<→o< (subst (λ k → odef A k ) (sym &iso) ay) ) ac00 : (y : Ordinal) (cy : odef (IChainSet A (d→∋ A ax)) y) → IChainSup> A (ic→A∋y A (d→∋ A ax) cy) ac00 y cy = record { y = z ; A∋y = az ; y>x = y<z} where @@ -389,8 +388,6 @@ y<z = ic→< {A} PO y (subst (λ k → odef A k) &iso ay) (IChained.iy (proj2 icy)) (subst (λ k → ic-connect k (IChained.iy (proj2 icy))) &iso (IChained.ic (proj2 icy))) - - record SUP ( A B : HOD ) : Set (Level.suc n) where field sup : HOD @@ -405,19 +402,26 @@ Zorn-lemma {A} 0<A PO supP = zorn04 where z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ z01 {a} {b} A∋a A∋b (case1 a=b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋a} (sym a=b) b<a - z01 {a} {b} A∋a A∋b (case2 a<b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋b} refl (IsStrictPartialOrder.trans PO {me A∋b} {me A∋a} {me A∋b} b<a a<b) - z02 : {x : Ordinal } → (ax : A ∋ * x ) → InFiniteIChain A x ax → ⊥ - z02 {x} ax ic = zc5 ic where - FC : HOD - FC = IChainSet A ax - zc6 : InFiniteIChain A x ax → ¬ SUP A FC - zc6 inf = {!!} - FC-is-total : IsTotalOrderSet FC - FC-is-total = {!!} - FC⊆A : FC ⊆ A - FC⊆A = record { incl = λ {x} lt → proj1 lt } - zc5 : InFiniteIChain A x ax → ⊥ - zc5 x = zc6 x ( supP FC FC⊆A FC-is-total ) + z01 {a} {b} A∋a A∋b (case2 a<b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋b} refl + (IsStrictPartialOrder.trans PO {me A∋b} {me A∋a} {me A∋b} b<a a<b) + s = ODC.minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A)) + sa = ODC.x∋minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A)) + z02 : {x max : Ordinal } → (ax : A ∋ * x ) → InFiniteIChain A max ax → ⊥ + z02 {x} {max} ax ifc = zc5 ifc where + FC : HOD + FC = IChainSet A ax + zc6 : InFiniteIChain A max ax → ¬ SUP A (InFCSet A ax ifc) + zc6 inf sup = z01 nxa (SUP.A∋maximal sup) (SUP.x<sup sup {!!} ) {!!} where + nx : Ordinal + nx = cinext A ax ifc (& (SUP.sup sup)) + nxa : A ∋ * nx + nxa = {!!} + fct : IsTotalOrderSet (InFCSet A ax ifc) + fct = ChainClosure-is-total A {x} ax PO ifc + FC⊆A : InFCSet A ax ifc ⊆ A + FC⊆A = InFCSet⊆A A {x} ax ifc + zc5 : InFiniteIChain A max ax → ⊥ + zc5 ic = zc6 ic ( supP (InFCSet A ax ifc) FC⊆A fct ) -- ZChain is not compatible with the SUP condition ind : (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A y ∨ Maximal A ) → ZChain A x ∨ Maximal A