changeset 921:c0cf2b383064

UnionZF
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 17 Oct 2022 10:32:31 +0900
parents a2f8d14012aa
children 620c2f3440f5
files src/zorn.agda
diffstat 1 files changed, 88 insertions(+), 78 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Sun Oct 16 17:26:49 2022 +0900
+++ b/src/zorn.agda	Mon Oct 17 10:32:31 2022 +0900
@@ -685,79 +685,6 @@
               m06 : ChainP A f mf ay supf b 
               m06 = record { fcy<sup = m07 ;  order = m08 ; supu=u = m05 }
 
-     ---
-     --- the maximum chain  has fix point of any ≤-monotonic function
-     ---
-     sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y)  
-         (zc : ZChain A f mf ay x ) → SUP A (ZChain.chain zc)
-     sp0 f mf {x} ay zc = ZChain.sup zc o≤-refl
-
-     fixpoint :  ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f )  (zc : ZChain A f mf as0 (& A) )
-            → f (& (SUP.sup (sp0 f mf as0 zc ))) ≡ & (SUP.sup (sp0 f mf as0 zc  ))
-     fixpoint f mf zc = z14 where
-           chain = ZChain.chain zc
-           supf = ZChain.supf zc
-           sp1 : SUP A chain
-           sp1 = sp0 f mf as0 zc 
-           z10 :  {a b : Ordinal } → (ca : odef chain a ) → supf b o< supf (& A) → (ab : odef A b ) 
-              →  HasPrev A chain b f ∨  IsSup A chain {b} ab 
-              → * a < * b  → odef chain b
-           z10 = ZChain1.is-max (SZ1 f mf as0 zc (& A) )
-           z22 : & (SUP.sup sp1) o< & A
-           z22 = c<→o< ( SUP.as sp1 )
-           z21 : supf (& (SUP.sup sp1)) o< supf (& A)
-           z21 = ?
-           -- z21 : supf (& (SUP.sup sp1)) o< & A
-           -- z21 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k) (sym &iso) (ZChain.asupf zc ) ))
-           z12 : odef chain (& (SUP.sup sp1))
-           z12 with o≡? (& s) (& (SUP.sup sp1))
-           ... | yes eq = subst (λ k → odef chain k) eq ( ZChain.chain∋init zc )
-           ... | no ne = ZChain1.is-max (SZ1 f mf as0 zc (& A)) {& s} {& (SUP.sup sp1)} ( ZChain.chain∋init zc ) z21 (SUP.as sp1)
-                (case2 z19 ) z13 where
-               z13 :  * (& s) < * (& (SUP.sup sp1))
-               z13 with SUP.x<sup sp1 ( ZChain.chain∋init zc )
-               ... | case1 eq = ⊥-elim ( ne (cong (&) eq) )
-               ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt
-               z19 : IsSup A chain {& (SUP.sup sp1)} (SUP.as sp1)
-               z19 = record {   x<sup = z20 }  where
-                   z20 :  {y : Ordinal} → odef chain y → (y ≡ & (SUP.sup sp1)) ∨ (y << & (SUP.sup sp1))
-                   z20 {y} zy with SUP.x<sup sp1 (subst (λ k → odef chain k ) (sym &iso) zy)
-                   ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso ( cong (&) y=p ))
-                   ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p )
-           ztotal : IsTotalOrderSet (ZChain.chain zc)
-           ztotal {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where 
-               uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
-               uz01 = chain-total A f mf as0 supf ( (proj2 ca)) ( (proj2 cb)) 
-           z14 :  f (& (SUP.sup (sp0 f mf as0 zc ))) ≡ & (SUP.sup (sp0 f mf as0 zc ))
-           z14 with ztotal (subst (λ k → odef chain k) (sym &iso)  (ZChain.f-next zc z12 )) z12 
-           ... | tri< a ¬b ¬c = ⊥-elim z16 where
-               z16 : ⊥
-               z16 with proj1 (mf (& ( SUP.sup sp1)) ( SUP.as sp1 ))
-               ... | case1 eq = ⊥-elim (¬b (subst₂ (λ j k → j ≡ k ) refl *iso (sym eq) ))
-               ... | case2 lt = ⊥-elim (¬c (subst₂ (λ j k → k < j ) refl *iso lt ))
-           ... | tri≈ ¬a b ¬c = subst ( λ k → k ≡ & (SUP.sup sp1) ) &iso ( cong (&) b )
-           ... | tri> ¬a ¬b c = ⊥-elim z17 where
-               z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) <  SUP.sup sp1)
-               z15  = SUP.x<sup sp1 (subst (λ k → odef chain k ) (sym &iso) (ZChain.f-next zc z12 ))
-               z17 : ⊥
-               z17 with z15
-               ... | case1 eq = ¬b eq
-               ... | case2 lt = ¬a lt
-
-     -- ZChain contradicts ¬ Maximal
-     --
-     -- ZChain forces fix point on any ≤-monotonic function (fixpoint)
-     -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain
-     --
-     z04 :  (nmx : ¬ Maximal A ) → (zc : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A)) → ⊥
-     z04 nmx zc = <-irr0  {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.as  sp1 ))))
-                                               (subst (λ k → odef A (& k)) (sym *iso) (SUP.as sp1) )
-           (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) -- x ≡ f x ̄
-           (proj1 (cf-is-<-monotonic nmx c (SUP.as sp1 ))) where          -- x < f x
-          sp1 : SUP A (ZChain.chain zc)
-          sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc 
-          c = & (SUP.sup sp1)
-
      uchain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → HOD
      uchain f mf {y} ay = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = 
              λ {z} cz → subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (A∋fc y f mf cz ))) }
@@ -1366,8 +1293,93 @@
                -- ; sup = {!!} ; supf-is-sup = {!!} ; supf-mono = {!!};  asupf = {!!}  } -- where -- x is a sup of (zc ?) 
           ... | case2 ¬x=sup =  no-extension {!!} -- x is not f y' nor sup of former ZChain from y -- no extention
          
-     SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f mf ay   (& A)
-     SZ f mf {y} ay = TransFinite {λ z → ZChain A f mf ay   z  } (λ x → ind f mf ay x   ) (& A)
+     ---
+     --- the maximum chain  has fix point of any ≤-monotonic function
+     ---
+
+     SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ZChain A f mf ay x
+     SZ f mf {y} ay x = TransFinite {λ z → ZChain A f mf ay z  } (λ x → ind f mf ay x   ) x
+
+     record ZChainP ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y) (z : Ordinal) : Set n where
+       field
+          uz : Ordinal
+          zc : odef (ZChain.chain (SZ f mf ay uz)) z
+
+     UnionZF : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y)  → HOD
+     UnionZF f mf {y} ay = record { od = record { def = λ x → ZChainP f mf ay x } ; odmax = & A ; <odmax = λ lt →  ∈∧P→o< ( ZChainP.zc lt) }
+     
+     uztotal : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y)  → 
+         IsTotalOrderSet (UnionZF f mf ay)
+     uztotal f mf ay {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where 
+          uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
+          uz01 = ?
+
+     sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y)  → SUP A (UnionZF f mf ay )
+     -- sp0 f mf {x} ay = supP (UnionZF f mf ay ) (λ lt → proj1 (ZChainP.zc lt)) (uztotal f mf ay)
+     sp0 f mf {x} ay = ? -- 
+
+     fixpoint :  ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f )  
+            → f (& (SUP.sup (sp0 f mf as0 ))) ≡ & (SUP.sup (sp0 f mf as0 ))
+     fixpoint f mf = z14 where
+           chain = UnionZF f mf as0 
+           supf : Ordinal → Ordinal 
+           supf = ?
+           sp1 : SUP A ?
+           sp1 = sp0 f mf as0 
+           z10 :  {a b : Ordinal } → (ca : odef chain a ) → supf b o< supf (& A) → (ab : odef A b ) 
+              →  HasPrev A chain b f ∨  IsSup A chain {b} ab 
+              → * a < * b  → odef chain b
+           z10 = ? -- ZChain1.is-max (SZ1 f mf as0 zc (& A) )
+           z22 : & (SUP.sup sp1) o< & A
+           z22 = c<→o< ( SUP.as sp1 )
+           z21 : supf (& (SUP.sup sp1)) o< supf (& A)
+           z21 = ?
+           -- z21 : supf (& (SUP.sup sp1)) o< & A
+           -- z21 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k) (sym &iso) (ZChain.asupf zc ) ))
+           z12 : odef chain (& (SUP.sup sp1))
+           z12 with o≡? (& s) (& (SUP.sup sp1))
+           ... | yes eq = subst (λ k → odef chain k) eq ? -- ( ZChain.chain∋init zc )
+           ... | no ne = ? where  -- ZChain1.is-max (SZ1 f mf as0 zc (& A)) {& s} {& (SUP.sup sp1)} ( ZChain.chain∋init zc ) z21 (SUP.as sp1)
+                -- (case2 ? ) z13 where
+               z13 :  * (& s) < * (& (SUP.sup sp1))
+               z13 with SUP.x<sup sp1 ?
+               ... | case1 eq = ⊥-elim ( ne (cong (&) eq) )
+               ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt
+               z19 : IsSup A chain {& (SUP.sup sp1)} (SUP.as sp1)
+               z19 = record {   x<sup = z20 }  where
+                   z20 :  {y : Ordinal} → odef chain y → (y ≡ & (SUP.sup sp1)) ∨ (y << & (SUP.sup sp1))
+                   z20 {y} zy with SUP.x<sup sp1 ?
+                   ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso ( cong (&) y=p ))
+                   ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p )
+           z14 :  f (& (SUP.sup (sp0 f mf as0 ))) ≡ & (SUP.sup (sp0 f mf as0 ))
+           z14 = ? -- with ?
+--           ... | tri< a ¬b ¬c = ⊥-elim z16 where
+--               z16 : ⊥
+--               z16 with proj1 (mf (& ( SUP.sup sp1)) ( SUP.as sp1 ))
+--               ... | case1 eq = ⊥-elim (¬b (subst₂ (λ j k → j ≡ k ) refl *iso (sym eq) ))
+--               ... | case2 lt = ⊥-elim (¬c (subst₂ (λ j k → k < j ) refl *iso lt ))
+--           ... | tri≈ ¬a b ¬c = subst ( λ k → k ≡ & (SUP.sup sp1) ) &iso ( cong (&) b )
+--           ... | tri> ¬a ¬b c = ⊥-elim z17 where
+--               z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) <  SUP.sup sp1)
+--               z15  = SUP.x<sup sp1 ? -- (subst (λ k → odef chain k ) (sym &iso) (ZChain.f-next zc z12 ))
+--               z17 : ⊥
+--               z17 with z15
+--               ... | case1 eq = ¬b eq
+--               ... | case2 lt = ¬a lt
+
+     -- ZChain contradicts ¬ Maximal
+     --
+     -- ZChain forces fix point on any ≤-monotonic function (fixpoint)
+     -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain
+     --
+     z04 :  (nmx : ¬ Maximal A ) → ⊥
+     z04 nmx = <-irr0  {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.as  sp1 ))))
+                                               (subst (λ k → odef A (& k)) (sym *iso) (SUP.as sp1) )
+           (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) ))) -- x ≡ f x ̄
+           (proj1 (cf-is-<-monotonic nmx c (SUP.as sp1 ))) where          -- x < f x
+          sp1 : SUP A ?
+          sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) as0 
+          c = & (SUP.sup sp1)
 
      zorn00 : Maximal A 
      zorn00 with is-o∅ ( & HasMaximal )  -- we have no Level (suc n) LEM 
@@ -1379,14 +1391,12 @@
          zorn01  = proj1  zorn03  
          zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x)
          zorn02 {x} ax m<x = proj2 zorn03 (& x) ax (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x )
-     ... | yes ¬Maximal = ⊥-elim ( z04 nmx zorn04 ) where
+     ... | yes ¬Maximal = ⊥-elim ( z04 nmx ) where
          -- if we have no maximal, make ZChain, which contradict SUP condition
          nmx : ¬ Maximal A 
          nmx mx =  ∅< {HasMaximal} zc5 ( ≡o∅→=od∅  ¬Maximal ) where
               zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) →  odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) 
               zc5 = ⟪  Maximal.as mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫
-         zorn04 : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A)
-         zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) 
 
 -- usage (see filter.agda )
 --