Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 637:c17d46ecb051
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Jun 2022 11:21:27 +0900 |
parents | 844eb13a5a39 |
children | 75578f19ed3c |
files | src/zorn.agda |
diffstat | 1 files changed, 14 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 21 11:03:20 2022 +0900 +++ b/src/zorn.agda Tue Jun 21 11:21:27 2022 +0900 @@ -682,22 +682,25 @@ → (ind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x ) → ∀ (x : Ordinal) → ind x (λ y _ → TransFinite ind y ) ≡ TransFinite ind x - record ZChain1 ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) ( z : Ordinal ) : Set (Level.suc n) where + record ZChain1 ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) : Set (Level.suc n) where field - zc : ZChain A y f z + zc : ZChain A y f (& A) supf = ZChain.supf zc field - chain-mono : {x y : Ordinal} → x o≤ y → y o≤ z → supf x ⊆' supf y - f-total : {x : Ordinal} → x o≤ z → IsTotalOrderSet (supf x) + chain-mono : {x y : Ordinal} → x o≤ y → supf x ⊆' supf y + f-total : {x : Ordinal} → IsTotalOrderSet (supf x) SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) - → (z : Ordinal) → ZChain1 f mf ay z - SZ1 f mf {y} ay z = record { zc = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) z + → ZChain1 f mf ay + SZ1 f mf {y} ay = record { zc = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) ; chain-mono = mono sf ; f-total = {!!} } where -- TransFinite {λ w → ZChain1 f mf ay w} indp z where sf : Ordinal → HOD - sf x = ZChain.supf (TransFinite (ind f mf ay) z) x - mono : {x : Ordinal} {w : Ordinal} (sf : Ordinal → HOD) → x o≤ w → w o≤ z → sf x ⊆' sf w - mono {a} {b} sf a≤b b≤z = TransFinite0 {λ b → a o≤ b → b o≤ z → sf a ⊆' sf b } {!!} b a≤b b≤z + sf x = ZChain.supf (TransFinite (ind f mf ay) (& A)) x + mono : {x : Ordinal} {w : Ordinal} (sf : Ordinal → HOD) → x o≤ w → sf x ⊆' sf w + mono {a} {b} sf a≤b = TransFinite0 {λ b → a o≤ b → sf a ⊆' sf b } mind b a≤b where + mind : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → a o≤ y₁ → sf a ⊆' sf y₁) → a o≤ x → sf a ⊆' sf x + mind = {!!} + zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM @@ -716,9 +719,9 @@ zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ zorn04 : ZChain A (& s) (cf nmx) (& A) - zorn04 = ZChain1.zc ( SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) (& A)) + zorn04 = ZChain1.zc ( SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) ) total : IsTotalOrderSet (ZChain.chain zorn04) - total = ZChain1.f-total (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as) (& A)) o≤-refl + total = ZChain1.f-total (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as) ) -- usage (see filter.agda ) --