Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1099:c2501d308c95
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 25 Dec 2022 10:12:56 +0900 |
parents | 9dcbf3524a5c |
children | c90eec304cfa |
files | src/PFOD.agda |
diffstat | 1 files changed, 22 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/PFOD.agda Sat Dec 24 21:16:13 2022 +0900 +++ b/src/PFOD.agda Sun Dec 25 10:12:56 2022 +0900 @@ -107,10 +107,10 @@ ω→2 : HOD ω→2 = Power infinite -ω→2f : (x : HOD) → ω→2 ∋ x → Nat → Two -ω→2f x lt n with ODC.∋-p O x (nat→ω n) -ω→2f x lt n | yes p = i1 -ω→2f x lt n | no ¬p = i0 +ω2→f : (x : HOD) → ω→2 ∋ x → Nat → Two +ω2→f x lt n with ODC.∋-p O x (nat→ω n) +ω2→f x lt n | yes p = i1 +ω2→f x lt n | no ¬p = i0 fω→2-sel : ( f : Nat → Two ) (x : HOD) → Set n fω→2-sel f x = (infinite ∋ x) ∧ ( (lt : odef infinite (& x) ) → f (ω→nat x lt) ≡ i1 ) @@ -126,12 +126,25 @@ ω2∋f : (f : Nat → Two) → ω→2 ∋ fω→2 f ω2∋f f = power← infinite (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {infinite} )) lt)) -ω→2f≡i1 : (X i : HOD) → (iω : infinite ∋ i) → (lt : ω→2 ∋ X ) → ω→2f X lt (ω→nat i iω) ≡ i1 → X ∋ i +ω→2f≡i1 : (X i : HOD) → (iω : infinite ∋ i) → (lt : ω→2 ∋ X ) → ω2→f X lt (ω→nat i iω) ≡ i1 → X ∋ i ω→2f≡i1 X i iω lt eq with ODC.∋-p O X (nat→ω (ω→nat i iω)) ω→2f≡i1 X i iω lt eq | yes p = subst (λ k → X ∋ k ) (nat→ω-iso iω) p --- someday ... --- postulate --- ω→2f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω→2f X lt ) =h= X --- fω→2-iso : (f : Nat → Two) → ω→2f ( fω→2 f ) (ω2∋f f) ≡ f +ω2→f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω2→f X lt ) =h= X +eq→ (ω2→f-iso X lt) {x} ⟪ ωx , ⟪ ωx1 , iso ⟫ ⟫ = le00 where + le00 : odef X x + le00 = subst (λ k → odef X k) &iso ( ω→2f≡i1 _ _ ωx1 lt (iso ωx1) ) +eq← (ω2→f-iso X lt) {x} Xx = ⟪ subst (λ k → odef infinite k) &iso le02 , ⟪ le02 , le01 ⟫ ⟫ where + le02 : infinite ∋ * x + le02 = power→ infinite _ lt (subst (λ k → odef X k) (sym &iso) Xx) + le01 : (wx : odef infinite (& (* x))) → ω2→f X lt (ω→nat (* x) wx) ≡ i1 + le01 wx = ? +fω→2-iso : (f : Nat → Two) → ω2→f ( fω→2 f ) (ω2∋f f) ≡ f +fω→2-iso f = f-extensionality le01 where + le01 : (x : Nat) → ω2→f (fω→2 f) (ω2∋f f) x ≡ f x + le01 Zero = ? + le01 (Suc x) = ? + + +