Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 681:c5c8e37d9a6c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Jul 2022 18:36:23 +0900 |
parents | b27501ac4f4a |
children | 663b34227faf |
files | src/zorn.agda |
diffstat | 1 files changed, 22 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jul 09 17:52:43 2022 +0900 +++ b/src/zorn.agda Sat Jul 09 18:36:23 2022 +0900 @@ -261,10 +261,10 @@ record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where field psup : Ordinal → Ordinal - psup<z : (x : Ordinal ) → psup x o< & A + p≤z : (x : Ordinal ) → odef A (psup x) chainf : (x : Ordinal) → HOD is-chain : (x w : Ordinal) → odef (chainf x) w → Chain A f mf ay (psup x ) w - psup-mono : (x y : Ordinal) → (x≤z : x o≤ z ) → chainf x ⊆' chainf z + psup-mono : (x : Ordinal) → (x≤z : x o≤ z ) → chainf x ⊆' chainf z record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (zc0 : (x : Ordinal) → ZChain1 A f mf ay x ) ( z : Ordinal ) : Set (Level.suc n) where @@ -428,44 +428,37 @@ sc : ZChain1 A f mf ay px sc = prev px px<x pchain : HOD - pchain = record { od = record { def = λ x → odef A x ∧ Chain A f mf ay (ZChain1.psup sc ? ) x } - ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } + pchain = chainf sc px + no-ext : ZChain1 A f mf ay x + no-ext = record { psup = ZChain1.psup sc ; p≤z = ZChain1.p≤z sc ; chainf = ZChain1.chainf sc + ; is-chain = ZChain1.is-chain sc ; psup-mono = sc0 } where + sc0 : (z : Ordinal) → z o≤ x → chainf sc z ⊆' chainf sc x + sc0 = ? sc4 : ZChain1 A f mf ay x - sc4 with o≤? x o∅ - ... | yes x=0 = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } - ... | no 0<x with ODC.∋-p O A (* x) - ... | no noax = record { psup = ZChain1.psup sc ; p≤z = ? ; p≤a = ? ; chainf = ? } + sc4 with ODC.∋-p O A (* x) + ... | no noax = record { psup = ZChain1.psup sc ; p≤z = ? ; chainf = ? ; is-chain = ? ; psup-mono = ? } ... | yes ax with ODC.p∨¬p O ( HasPrev A pchain ax f ) - ... | case1 pr = record { psup = ZChain1.psup sc ; p≤z = ? ; p≤a = ? ; chainf = ? } + ... | case1 pr = record { psup = ZChain1.psup sc ; p≤z = ? ; chainf = ? ; is-chain = ? ; psup-mono = ? } ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A pchain ax ) - ... | case1 is-sup = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } where + ... | case1 is-sup = record { psup = ? ; p≤z = ? ; chainf = ? ; is-chain = ? ; psup-mono = ? } where schain : HOD schain = ? -- record { od = record { def = λ z → odef A z ∧ ( odef (ZChain1.chain sc ) z ∨ (FClosure A f x z)) } -- ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - sc7 : ¬ HasPrev A ? (subst (λ k → odef A k) &iso ax) f - sc7 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } - -- sc9 : Chain A f mf ay x schain - -- sc9 = ? -- ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc7 - -- record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k )) &iso (IsSup.x<sup is-kjjkjjsup lt) } - ... | case2 ¬x=sup = record { psup = ZChain1.psup sc ; p≤z = ? ; p≤a = ? ; chainf = ? } where - sc17 : ¬ HasPrev A ? (subst (λ k → odef A k) &iso ax) f - sc17 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } - sc10 : ¬ IsSup A ? (subst (λ k → odef A k) &iso ax) - sc10 not = ¬x=sup ( record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k ) ) (sym &iso) ( IsSup.x<sup not lt ) } ) + ... | case2 ¬x=sup = record { psup = ZChain1.psup sc ; p≤z = ? ; chainf = ? ; is-chain = ? ; psup-mono = ? } ... | no ¬ox = sc4 where - chainf : (z : Ordinal) → z o< x → HOD - chainf z z<x = ? -- Chain1.chain ( prev z z<x ) - -- chainq : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x ) - -- chainq z z<x = ? -- ZChain1.chain-uniq ( prev z z<x) + pchainf : (z : Ordinal) → z o< x → HOD + pchainf z z<x = ZChain1.chainf (prev z z<x) z + UZ : HOD + UZ = UnionCF A x pchainf sc4 : ZChain1 A f mf ay x sc4 with o≤? x o∅ - ... | yes x=0 = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } + ... | yes x=0 = record { psup = ? ; p≤z = ? ; chainf = ? ; is-chain = ? ; psup-mono = ? } ... | no 0<x with ODC.∋-p O A (* x) - ... | no noax = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } - ... | yes ax with ODC.p∨¬p O ( HasPrev A (UnionCF A x chainf) ax f ) - ... | case1 pr = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (UnionCF A x chainf) ax ) + ... | no noax = record { psup = ? ; p≤z = ? ; chainf = ? ; is-chain = ? ; psup-mono = ? } + ... | yes ax with ODC.p∨¬p O ( HasPrev A (UnionCF A x pchainf) ax f ) + ... | case1 pr = record { psup = ? ; p≤z = ? ; chainf = ? ; is-chain = ? ; psup-mono = ? } + ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (UnionCF A x pchainf) ax ) ... | case1 is-sup = ? ... | case2 ¬x=sup = ?