Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1018:c63f1fadd27f
sa<b
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 24 Nov 2022 11:18:46 +0900 |
parents | ffdfd8d1303a |
children | eb2d0fb19b67 |
files | src/zorn.agda |
diffstat | 1 files changed, 32 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Nov 24 10:49:29 2022 +0900 +++ b/src/zorn.agda Thu Nov 24 11:18:46 2022 +0900 @@ -431,7 +431,7 @@ sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z → IsSUP A (UnionCF A f mf ay supf b) ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf b) f b ) → supf b ≡ b cfcs : (mf< : <-monotonic-f A f) - {a b w : Ordinal } → a o< b → b o≤ z → supf a o< z → FClosure A f (supf a) w → odef (UnionCF A f mf ay supf z) w + {a b w : Ordinal } → a o< b → b o≤ z → supf a o< b → FClosure A f (supf a) w → odef (UnionCF A f mf ay supf b) w asupf : {x : Ordinal } → odef A (supf x) supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y @@ -529,7 +529,7 @@ z54 {w} ⟪ aw , ch-init fc ⟫ = fcy<sup b≤z fc z54 {w} ⟪ aw , ch-is-sup u u<x is-sup fc ⟫ = subst (λ k → (w ≡ k) ∨ (w << k )) (sym (supf-is-minsup b≤z)) - (MinSUP.x≤sup (minsup b≤z) ?) where + (MinSUP.x≤sup (minsup b≤z) (cfcs mf< u<b b≤z ? fc )) where u<b : u o< b u<b = supf-inject ( subst (λ k → k o< supf b) (sym (ChainP.supu=u is-sup)) u<x ) su<z : supf u o< z @@ -859,7 +859,7 @@ m11 : {z : Ordinal} → FClosure A f (supf b) z → (z ≡ ZChain.supf zc x) ∨ (z << ZChain.supf zc x) m11 {z} fc = subst (λ k → (z ≡ k) ∨ (z << k)) (sym m18) ( MinSUP.x≤sup m17 m13 ) where m13 : odef (UnionCF A f mf ay supf x) z - m13 = ? -- ZChain.cfcs zc mf< b<x x≤A (ZChain.supf<A zc) fc + m13 = ZChain.cfcs zc mf< b<x x≤A ? fc ... | no lim = record { is-max = is-max ; order = order } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → @@ -897,7 +897,7 @@ m11 : {z : Ordinal} → FClosure A f (supf b) z → (z ≡ ZChain.supf zc x) ∨ (z << ZChain.supf zc x) m11 {z} fc = subst (λ k → (z ≡ k) ∨ (z << k)) (sym m18) ( MinSUP.x≤sup m17 m13 ) where m13 : odef (UnionCF A f mf ay supf x) z - m13 = ? -- ZChain.cfcs zc mf< b<x x≤A (ZChain.supf<A zc) fc + m13 = ZChain.cfcs zc mf< b<x x≤A ? fc uchain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → HOD uchain f mf {y} ay = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = @@ -1099,28 +1099,28 @@ -- this is a kind of maximality, so we cannot prove this without <-monotonicity -- cfcs : (mf< : <-monotonic-f A f) {a b w : Ordinal } - → a o< b → b o≤ x → supf1 a o< x → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 x) w - cfcs mf< {a} {b} {w} a<b b≤x sa<x fc with zc43 (supf0 a) px + → a o< b → b o≤ x → supf1 a o< b → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 b) w + cfcs mf< {a} {b} {w} a<b b≤x sa<b fc with zc43 (supf0 a) px ... | case2 px≤sa = z50 where a≤px : a o≤ px a≤px = subst (λ k → a o< k) (sym (Oprev.oprev=x op)) (ordtrans<-≤ a<b b≤x) -- supf0 a ≡ px we cannot use previous cfcs, it is in the chain because -- supf0 a ≡ supf0 (supf0 a) ≡ supf0 px o< x - z50 : odef (UnionCF A f mf ay supf1 x) w + z50 : odef (UnionCF A f mf ay supf1 b) w z50 with osuc-≡< px≤sa ... | case1 px=sa = ⟪ A∋fc {A} _ f mf fc , ch-is-sup (supf0 px) ? ? (subst (λ k → FClosure A f k w) ? fc) ⟫ - ... | case2 px<sa = ⊥-elim ( ¬p<x<op ⟪ px<sa , subst₂ (λ j k → j o< k ) (sf1=sf0 a≤px) (sym (Oprev.oprev=x op)) sa<x ⟫ ) + ... | case2 px<sa = ⊥-elim ( ¬p<x<op ⟪ px<sa , subst₂ (λ j k → j o< k ) (sf1=sf0 a≤px) (sym (Oprev.oprev=x op)) ? ⟫ ) ... | case1 sa<px with trio< a px ... | tri< a<px ¬b ¬c = z50 where - z50 : odef (UnionCF A f mf ay supf1 x) w + z50 : odef (UnionCF A f mf ay supf1 b) w z50 with osuc-≡< b≤x - ... | case2 lt with ZChain.cfcs zc mf< a<b (subst (λ k → b o< k) (sym (Oprev.oprev=x op)) lt) sa<px fc + ... | case2 lt with ZChain.cfcs zc mf< a<b (subst (λ k → b o< k) (sym (Oprev.oprev=x op)) lt) ? fc ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ - ... | ⟪ az , ch-is-sup u u<b is-sup fc ⟫ = ⟪ az , ch-is-sup u ? cp1 (fcpu fc u≤px ) ⟫ where -- u o< px → u o< b ? + ... | ⟪ az , ch-is-sup u u<b is-sup fc ⟫ = ⟪ az , ch-is-sup u u<b cp1 (fcpu fc u≤px ) ⟫ where -- u o< px → u o< b ? u≤px : u o≤ px - u≤px = subst (λ k → u o< k) (sym (Oprev.oprev=x op)) (ordtrans<-≤ u<b ? ) + u≤px = subst (λ k → u o< k) (sym (Oprev.oprev=x op)) (ordtrans<-≤ u<b b≤x ) u<x : u o< x - u<x = ordtrans<-≤ u<b ? --b≤x + u<x = ordtrans<-≤ u<b b≤x cp1 : ChainP A f mf ay supf1 u cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (sf=eq u<x) (ChainP.fcy<sup is-sup fc ) ; order = λ {s} {z} s<u fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (sf=eq u<x) @@ -1130,7 +1130,7 @@ ; supu=u = trans (sym (sf=eq u<x)) (ChainP.supu=u is-sup) } z50 | case1 eq with ZChain.cfcs zc mf< a<px o≤-refl sa<px fc ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ - ... | ⟪ az , ch-is-sup u u<px is-sup fc ⟫ = ⟪ az , ch-is-sup u ? cp1 (fcpu fc (o<→≤ u<px)) ⟫ where -- u o< px → u o< b ? + ... | ⟪ az , ch-is-sup u u<px is-sup fc ⟫ = ⟪ az , ch-is-sup u u<b cp1 (fcpu fc (o<→≤ u<px)) ⟫ where -- u o< px → u o< b ? u<b : u o< b u<b = subst (λ k → u o< k ) (trans (Oprev.oprev=x op) (sym eq) ) (ordtrans u<px <-osuc ) u<x : u o< x @@ -1155,9 +1155,9 @@ z51 = subst (λ k → FClosure A f k w) (sym (trans (cong supf1 (sym a=px)) (sf1=sf0 (o≤-refl0 a=px) ))) fc z53 : odef A w z53 = A∋fc {A} _ f mf fc - csupf1 : odef (UnionCF A f mf ay supf1 x) w + csupf1 : odef (UnionCF A f mf ay supf1 b) w csupf1 with trio< (supf0 px) x - ... | tri< sfpx<x ¬b ¬c = ⟪ z53 , ch-is-sup spx ? cp1 fc1 ⟫ where + ... | tri< sfpx<x ¬b ¬c = ⟪ z53 , ch-is-sup spx (subst (λ k → spx o< k) (sym b=x) sfpx<x) cp1 fc1 ⟫ where spx = supf0 px spx≤px : supf0 px o≤ px spx≤px = zc-b<x _ sfpx<x @@ -1168,9 +1168,8 @@ order : {s z1 : Ordinal} → supf1 s o< supf1 spx → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 spx) ∨ (z1 << supf1 spx) order {s} {z1} ss<spx fcs = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) (trans (sym (ZChain.supf-is-minsup zc spx≤px )) (sym (sf1=sf0 spx≤px) ) ) - (MinSUP.x≤sup (ZChain.minsup zc spx≤px) ? ) where - -- (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) - -- spx≤px ss<px (fcup fcs (ordtrans (supf-inject0 supf1-mono ss<spx) spx≤px ) ))) where + (MinSUP.x≤sup (ZChain.minsup zc spx≤px) (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) + spx≤px ? (fcup fcs (ordtrans (supf-inject0 supf1-mono ss<spx) spx≤px ) ))) where ss<px : supf0 s o< px ss<px = osucprev ( begin osuc (supf0 s) ≡⟨ cong osuc (sym (sf1=sf0 ( begin @@ -1268,12 +1267,12 @@ -- supf1 x ≡ supf0 px because of supfmax cfcs : (mf< : <-monotonic-f A f) {a b w : Ordinal } - → a o< b → b o≤ x → supf0 a o< x → FClosure A f (supf0 a) w → odef (UnionCF A f mf ay supf0 x) w - cfcs mf< {a} {b} {w} a<b b≤x sa<x fc with trio< b px - ... | tri< a ¬b ¬c = ? -- ZChain.cfcs zc mf< a<b (o<→≤ a) ? fc - ... | tri≈ ¬a refl ¬c = ? -- ZChain.cfcs zc mf< a<b o≤-refl ? fc + → a o< b → b o≤ x → supf0 a o< b → FClosure A f (supf0 a) w → odef (UnionCF A f mf ay supf0 b) w + cfcs mf< {a} {b} {w} a<b b≤x sa<b fc with trio< b px + ... | tri< a ¬b ¬c = ZChain.cfcs zc mf< a<b (o<→≤ a) ? fc + ... | tri≈ ¬a refl ¬c = ZChain.cfcs zc mf< a<b o≤-refl ? fc ... | tri> ¬a ¬b px<b with trio< a px - ... | tri< a ¬b ¬c = ? -- chain-mono f mf ay (ZChain.supf zc) (ZChain.supf-mono zc) (o<→≤ px<b) ( ZChain.cfcs zc mf< a o≤-refl ? fc ) + ... | tri< a ¬b ¬c = chain-mono f mf ay (ZChain.supf zc) (ZChain.supf-mono zc) (o<→≤ px<b) ( ZChain.cfcs zc mf< a o≤-refl ? fc ) ... | tri> ¬a ¬b c = ⊥-elim ( o≤> ? c ) ... | tri≈ ¬a refl ¬c = ? -- supf0 px o< x → odef (UnionCF A f mf ay supf0 x) (supf0 px) -- x o≤ supf0 px o≤ sp → @@ -1423,15 +1422,15 @@ ... | tri> ¬a ¬b c = ? cfcs : (mf< : <-monotonic-f A f) {a b w : Ordinal } - → a o< b → b o≤ x → supf1 a o< x → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 x) w - cfcs mf< {a} {b} {w} a<b b≤x sa<x fc with osuc-≡< b≤x + → a o< b → b o≤ x → supf1 a o< b → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 b) w + cfcs mf< {a} {b} {w} a<b b≤x sa<b fc with osuc-≡< b≤x ... | case1 b=x with trio< a x ... | tri< a<x ¬b ¬c = zc40 where sa = ZChain.supf (pzc (ob<x lim a<x)) a m = omax a sa m<x : m o< x m<x with trio< a sa | inspect (omax a) sa - ... | tri< a<sa ¬b ¬c | record { eq = eq } = ob<x lim sa<x + ... | tri< a<sa ¬b ¬c | record { eq = eq } = ob<x lim ? ... | tri≈ ¬a a=sa ¬c | record { eq = eq } = subst (λ k → k o< x) eq zc41 where zc41 : omax a sa o< x zc41 = osucprev ( begin @@ -1449,10 +1448,10 @@ fcm = subst (λ k → FClosure A f k w ) (zeq (ob<x lim a<x) (ob<x lim m<x) zc42 (o<→≤ <-osuc) ) fc zcm : odef (UnionCF A f mf ay (ZChain.supf (pzc (ob<x lim m<x))) (osuc (omax a sa))) w zcm = ZChain.cfcs (pzc (ob<x lim m<x)) mf< (o<→≤ (omax-x _ _)) o≤-refl (o<→≤ sam<m) fcm - zc40 : odef (UnionCF A f mf ay supf1 x) w + zc40 : odef (UnionCF A f mf ay supf1 b) w zc40 with ZChain.cfcs (pzc (ob<x lim m<x)) mf< (o<→≤ (omax-x _ _)) o≤-refl (o<→≤ sam<m) fcm ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ - ... | ⟪ az , ch-is-sup u u<x is-sup fc1 ⟫ = ⟪ az , ch-is-sup u ? ? fc2 ⟫ where -- u o< px → u o< b ? + ... | ⟪ az , ch-is-sup u u<x is-sup fc1 ⟫ = ⟪ az , ch-is-sup u u<b ? fc2 ⟫ where -- u o< px → u o< b ? zc55 : u o< osuc m zc55 = u<x u<b : u o< b -- b o≤ u → b o≤ a -- u ≡ supf1 a @@ -1467,17 +1466,16 @@ zc57 = osucc u<x ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a (ordtrans<-≤ a<b b≤x)) ... | tri> ¬a ¬b c = ⊥-elim ( ¬a (ordtrans<-≤ a<b b≤x)) - cfcs mf< {a} {b} {w} a<b b≤x sa<x fc | case2 b<x = zc40 where + cfcs mf< {a} {b} {w} a<b b≤x sa<b fc | case2 b<x = zc40 where supfb = ZChain.supf (pzc (ob<x lim b<x)) fcb : FClosure A f (supfb a) w fcb = ? -- supfb a o≤ supfb b - -- supfb (supfb a) o≤ supfb b sa<b : supfb a o< osuc b sa<b = ? - zcb : odef (UnionCF A f mf ay supfb x) w - zcb = ? -- ZChain.cfcs (pzc (ob<x lim b<x)) mf< a<b (o<→≤ <-osuc) sa<b fcb - zc40 : odef (UnionCF A f mf ay supf1 x) w + zcb : odef (UnionCF A f mf ay supfb b) w + zcb = ZChain.cfcs (pzc (ob<x lim b<x)) mf< a<b (o<→≤ <-osuc) ? fcb + zc40 : odef (UnionCF A f mf ay supf1 b) w zc40 with zcb ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ ... | ⟪ az , ch-is-sup u u<x is-sup fc1 ⟫ = ⟪ az , ch-is-sup u u<x ? ? ⟫