Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1413:c66ee9d43c05
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Jun 2023 16:37:32 +0900 |
parents | 4b72bc3e2fab |
children | 180caeb6927b |
files | src/cardinal.agda |
diffstat | 1 files changed, 10 insertions(+), 35 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Fri Jun 30 15:08:29 2023 +0900 +++ b/src/cardinal.agda Fri Jun 30 16:37:32 2023 +0900 @@ -297,9 +297,9 @@ ... | next-gf t ix = sym x=fy h : {x : Ordinal } → (ax : odef (* a) x) → Ordinal - h {x} ax with ODC.∋-p O UC (* x) - ... | yes cn = fU x (subst (λ k → odef k x ) (sym *iso) (subst (λ k → gfImage k) &iso cn) ) - ... | no ncn = i→ be10 x (subst (λ k → odef k x ) (sym *iso) ⟪ ax , subst (λ k → ¬ (gfImage k)) &iso ncn ⟫ ) + h {x} ax with ODC.p∨¬p O (gfImage x) + ... | case1 cn = fU x (subst (λ k → odef k x ) (sym *iso) cn ) + ... | case2 ncn = i→ be10 x (subst (λ k → odef k x ) (sym *iso) ⟪ ax , ncn ⟫ ) h⁻¹ : {x : Ordinal } → (bx : odef (* b) x) → Ordinal h⁻¹ {x} bx with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) @@ -330,38 +330,13 @@ be60 = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ be72 : (x : Ordinal) (bx : odef (* b) x) → h (be71 x bx) ≡ x - be72 x bx = ? where - - be76 : (cn : odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) → h⁻¹ bx ≡ Uf x (subst (λ k → odef k x) (sym *iso) cn) - be76 cn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) - ... | case1 img = cong (λ k → Uf x k ) ( HE.≅-to-≡ ( ∋-irr {(* (& (Image (& UC) (Injection-⊆ UC⊆a f))))} b04 b05 )) where - b04 : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x - b04 = subst (λ k → odef k x) (sym *iso) img - b05 : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x - b05 = subst (λ k → odef k x) (sym *iso) cn - ... | case2 nimg = ⊥-elim ( nimg cn) - - be73 : (cn : odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) → odef (* a) (Uf x (subst (λ k → odef k x) (sym *iso) cn)) - be73 cn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) - ... | case1 img = be03 (subst (λ k → odef k x) (sym *iso) cn) where - be03 : (cn : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x) → odef (* a) (Uf x cn ) - be03 cn with subst (λ k → odef k x ) *iso cn - ... | record { y = y ; ay = ay ; x=fy = x=fy } = UC⊆a ay - ... | case2 nimg = ⊥-elim ( nimg cn) - - be60 : (ncn : ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) → odef (* b \ * (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x - be60 ncn = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ - be74 : (ncn : ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) → odef (* a) (i→ be11 x (subst (λ k → odef k x ) (sym *iso) (be60 ncn) )) - be74 ncn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) - ... | case1 img = ⊥-elim ( ncn img ) - ... | case2 nimg = proj1 (subst₂ (λ j k → odef j k ) *iso refl (iB be11 x (subst (λ k → odef k x) (sym *iso) (be60 ncn)) )) - - be75 : h (be71 x bx) ≡ x - be75 with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) - ... | case1 cn = ? where -- trans ? (be78 (be73 cn)) where - be78 : (auf : odef (* a) (Uf x (subst (λ k → odef k x) (sym *iso) cn))) → h auf ≡ x - be78 = ? - ... | case2 ncn = ? + be72 x bx with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) + be72 x bx | case1 img = ? where + be73 : gfImage (Uf x (subst (λ k → odef k x) (sym *iso) img )) + be73 = ? + be74 : Uf x (subst (λ k → odef k x) (sym *iso) img ) ≡ IsImage.y (subst (λ k → odef k x) *iso (subst (λ k → odef k x) (sym *iso) img)) + be74 = refl + be72 x bx | case2 nimg = ? _c<_ : ( A B : HOD ) → Set n