Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 68:c69657d00557
Union
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 30 May 2019 02:31:58 +0900 |
parents | 94c796aee319 |
children | 93abc0133b8a |
files | ordinal-definable.agda |
diffstat | 1 files changed, 5 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Thu May 30 01:56:12 2019 +0900 +++ b/ordinal-definable.agda Thu May 30 02:31:58 2019 +0900 @@ -106,8 +106,8 @@ def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df -transitive : {n : Level } { x y z : OD {n} } → y ∋ x → z ∋ y → z ∋ x -transitive {n} {x} {y} {z} x∋y z∋y with ordtrans ( c<→o< {n} {x} {y} x∋y ) ( c<→o< {n} {y} {z} z∋y ) +transitive : {n : Level } { z y x : OD {n} } → z ∋ y → y ∋ x → z ∋ x +transitive {n} {z} {y} {x} z∋y x∋y with ordtrans ( c<→o< {n} {x} {y} x∋y ) ( c<→o< {n} {y} {z} z∋y ) ... | t = lemma0 (lemma t) where lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) lemma xo<z = o<→c< xo<z @@ -349,10 +349,8 @@ proj2 (pair A B ) = case2 refl empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x () - union→ : (X x y : OD {suc n} ) → (X ∋ x) → (x ∋ y) → (Union X ∋ y) - union→ X x y X∋x x∋y = {!!} where - lemma : {z : Ordinal {suc n} } → def X z → z ≡ od→ord y - lemma {z} X∋z = {!!} + union→ : (X x y : OD) → X ∋ x → x ∋ y → Union X ∋ y + union→ X x y X∋x x∋y {z} X∋z = {!!} -- transitive {suc n} {X} {x} {y} X∋x x∋y ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) @@ -363,7 +361,7 @@ ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} - minimul x not = od∅ + minimul x not = od∅ regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 (regularity x not ) = ¬∅=→∅∈ not