Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 468:c70cf01b29f9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 23 Mar 2022 19:47:58 +0900 |
parents | c65cb6c07a38 |
children | 69f90d8d0607 |
files | src/ODC.agda |
diffstat | 1 files changed, 16 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODC.agda Wed Mar 23 16:42:42 2022 +0900 +++ b/src/ODC.agda Wed Mar 23 19:47:58 2022 +0900 @@ -106,11 +106,13 @@ OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) OrdP x y | tri> ¬a ¬b c = yes c +TotalOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) +TotalOrderSet A _<_ = {a b : HOD} → A ∋ a → A ∋ b → (a < b) ∨ (a ≡ b) ∨ (b < a ) + record SUP ( A B : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field sup : HOD A∋maximal : A ∋ sup - tri : {a b : HOD} → B ∋ a → B ∋ b → (a < b) ∨ (a ≡ b) ∨ (b < a ) x≤sup : (x : HOD) → B ∋ x → (x ≡ sup ) ∨ (x < sup ) record Maximal ( A : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where @@ -123,20 +125,28 @@ field B : HOD B⊆A : B ⊆ A - tri : {a b : HOD} → B ∋ a → B ∋ b → (a < b) ∨ (a ≡ b) ∨ (b < a ) + total : TotalOrderSet B _<_ fb : {x : HOD } → A ∋ x → HOD B∋fb : (x : HOD ) → (ax : A ∋ x) → B ∋ fb ax ¬x≤sup : (sup : HOD) → (as : A ∋ sup ) → & sup o< y → sup < fb as Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A - → ( ( B : HOD) → (B⊆A : B ⊆ A) → SUP A B _<_ ) + → ( ( B : HOD) → (B⊆A : B ⊆ A) → TotalOrderSet B _<_ → SUP A B _<_ ) → Maximal A _<_ Zorn-lemma {A} {_<_} 0<A supP = zorn00 where HasMaximal : HOD HasMaximal = record { od = record { def = λ x → (m : Ordinal) → odef A x ∧ odef A m ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = {!!} } ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (ZChain.B z) _<_ ) - ZChain→¬SUP z sp = {!!} + ZChain→¬SUP z sp = ⊥-elim {!!} + zeron01 : {B a b : HOD} → TotalOrderSet B _<_ → B ∋ a → B ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ + zeron01 {B} {a} {b} Tri s t (case1 a=b) v = {!!} + -- with Tri s t | inspect (Tri s) t + -- ... | case1 x | [ eq ] = {!!} + -- ... | case2 (case1 x) | [ eq ] = {!!} + -- ... | case2 (case2 x) | [ eq ] = {!!} + zeron01 {B} {a} {b} Tri s t (case2 a<b) v = {!!} + -- with Tri s t | inspect (Tri s) t ind : (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A y _<_ ) → ZChain A x _<_ ind x prev with Oprev-p x @@ -148,9 +158,10 @@ zorn00 : Maximal A _<_ zorn00 with is-o∅ ( & HasMaximal ) ... | no not = record { maximal = minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = {!!}; ¬maximal<x = {!!} } - ... | yes ¬Maximal = ⊥-elim ( ZChain→¬SUP (z (& A)) ( supP (ZChain.B (z (& A))) (ZChain.B⊆A (z (& A))) ) ) where + ... | yes ¬Maximal = ⊥-elim ( ZChain→¬SUP (z (& A)) ( supP B (ZChain.B⊆A (z (& A))) (ZChain.total (z (& A)))) ) where z : (x : Ordinal) → ZChain A x _<_ z = TransFinite ind + B = ZChain.B (z (& A)) open import zfc