Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1319:c7623ec8f0d3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Jun 2023 21:27:39 +0900 |
parents | 579f1bf9122c |
children | 46d2c0341fcb |
files | src/bijection.agda |
diffstat | 1 files changed, 8 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Sat Jun 10 20:50:18 2023 +0900 +++ b/src/bijection.agda Sat Jun 10 21:27:39 2023 +0900 @@ -604,14 +604,12 @@ lem12 (suc i) i=z with is-A (fun← cn (suc i)) | inspect ( count-A ) (suc i) ... | yes isa | record { eq = eq1 } = record { ac = suc i ; n<ca = subst (λ k → 0 < k) (sym eq1) 0<s ; all-a = ? } ... | no nisa | record { eq = eq1 } = ⊥-elim ( nisa record { a = fun← an zero ; fa=c = trans (sym (fiso← cn _)) (sym (cong (fun← cn) i=z)) } ) - lem10 (suc j) = ? where + lem10 (suc j) = record { ac = nac ; n<ca = ? ; all-a = ? } where -- -- maxAC n contains at least n elements of A -- - lem31 : maxAC (suc j) - lem31 with <∨≤ (maxAC.ac (lem10 j)) (fun→ cn (g (f (fun← an (suc j))))) - ... | case1 lt = record { ac = (fun→ cn (g (f (fun← an (suc j))))) ; n<ca = ? ; all-a = ? } - ... | case2 le = record { ac = (maxAC.ac (lem10 j)) ; n<ca = ? ; all-a = ? } + nac : ℕ + nac = max (fun→ cn (g (f (fun← an (suc j))))) (maxAC.ac (lem10 j)) lem01 : (n i : ℕ) → n < count-B i → B lem01 zero zero lt with is-B (fun← cn zero) @@ -620,12 +618,13 @@ lem01 zero (suc i) lt with is-B (fun← cn (suc i)) ... | yes isB = Is.a isB ... | no nisB = lem01 zero i lt - lem01 (suc n) zero lt with is-B (fun← cn zero) - ... | yes isB = Is.a isB - ... | no nisB = ⊥-elim (nat-≤> lt 0<s ) + lem01 (suc n) zero lt = ? -- cannot happen lem01 (suc n) (suc i) lt with is-B (fun← cn (suc i)) - ... | yes isB = Is.a isB ... | no nisB = lem01 (suc n) i lt + ... | yes isB with <-cmp n i + ... | tri< a ¬b ¬c = lem01 n i ? + ... | tri≈ ¬a b ¬c = Is.a isB + ... | tri> ¬a ¬b c = ? -- cannot happen ntob : (n : ℕ) → B ntob n = lem01 n (maxAC.ac (lem02 n)) (≤-trans (maxAC.n<ca (lem02 n)) (ca≤cb0 (maxAC.ac (lem02 n))) )