changeset 137:c7c9f3efc428

replace using Select
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 07 Jul 2019 08:56:25 +0900
parents 3cc848664a86
children 567084f2278f
files HOD.agda
diffstat 1 files changed, 2 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- a/HOD.agda	Sun Jul 07 02:19:32 2019 +0900
+++ b/HOD.agda	Sun Jul 07 08:56:25 2019 +0900
@@ -308,6 +308,8 @@
           lemma : {x : Ordinal} → ¬ ((y : Ordinal) → ¬ def X y ∧ (x ≡ od→ord (ψ (Ord y)))) →
             {y : Ordinal} → y o< x → ¬ ((y₁ : Ordinal) → ¬ def X y₁ ∧ (y ≡ od→ord (ψ (Ord y₁))))
           lemma {x} notx {y} y<x noty = notx ( λ z prod → noty z ( record { proj1 = proj1 prod ; proj2 = {!!} } ))
+    Replace' : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n}
+    Replace' X ψ = Select ( Ord (sup-o ( λ x → od→ord (ψ (ord→od x ))))) ( λ x → ¬ (∀ (y : Ordinal ) → ¬ ( def X y ∧  ( x == ψ (Ord y)  ))))
     Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n}
     Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x ;
          otrans = lemma } where