Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1015:c804e302f110
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 23 Nov 2022 19:30:29 +0900 |
parents | 8025c5d01153 |
children | aeda5d0537d7 |
files | src/zorn.agda |
diffstat | 1 files changed, 9 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Nov 23 18:03:23 2022 +0900 +++ b/src/zorn.agda Wed Nov 23 19:30:29 2022 +0900 @@ -539,27 +539,10 @@ fc-inject : {x y : Ordinal } → (mf< : <-monotonic-f A f) → x o≤ z → y o≤ z → supf x o< z → supf y o< z → { wx wy : Ordinal} → FClosure A f (supf x) wx → FClosure A f (supf y) wy → wx ≡ wy → supf x ≡ supf y - fc-inject mf< x≤z y≤z sx<z sy<z (init xa eqa) (init ya eqb) refl = trans eqa (sym eqb) - fc-inject {x} {y} mf< x≤z y≤z sx<z sy<z (init xa eqx) (fsuc ya fcy) eq = - ⊥-elim ( supf-¬hp x≤z (λ xa → proj1 (mf< _ xa)) record { ax = asupf ; y = ya ; ay = z53 ; x=fy = trans eqx eq } ) where - sy<sx : supf y << supf x - sy<sx = ftrans<=-< (≤to<= (s≤fc (supf y) f mf fcy)) (subst₂ (λ j k → j << k ) refl (trans (sym eq) (sym eqx)) - (proj1 ( mf< _ (A∋fc (supf y) f mf fcy) ))) - z53 : odef (UnionCF A f mf ay supf x) ya - z53 = cfcs mf< (supf-inject (supf-<inject sy<sx)) x≤z sy<z fcy - fc-inject {x} {y} mf< x≤z y≤z sx<z sy<z (fsuc xa fcx) (init ya eqy) eq = - ⊥-elim ( supf-¬hp y≤z (λ xa → proj1 (mf< _ xa)) record { ax = asupf ; y = xa ; ay = z53 ; x=fy = trans eqy (sym eq) } ) where - sx<sy : supf x << supf y - sx<sy = ftrans<=-< (≤to<= (s≤fc (supf x) f mf fcx)) (subst₂ (λ j k → j << k ) refl (trans eq (sym eqy)) - (proj1 ( mf< _ (A∋fc (supf x) f mf fcx) ))) - z53 : odef (UnionCF A f mf ay supf y) xa - z53 = cfcs mf< (supf-inject (supf-<inject sx<sy)) y≤z sx<z fcx - fc-inject mf< x≤z y≤z sx<z sy<z (fsuc xa fcx) (fsuc ya fcy) eq = fc-inject mf< x≤z y≤z sx<z sy<z fcx fcy (z54 eq) where - z54 : f xa ≡ f ya → xa ≡ ya - z54 fa=fb with trio< xa ya - ... | tri< a ¬b ¬c = ? - ... | tri≈ ¬a b ¬c = b - ... | tri> ¬a ¬b c = ? + fc-inject mf< x≤z y≤z sx<z sy<z = ? where + z53 : {x y : Ordinal } → supf x o< supf y → FClosure A f (supf x) wx → wx << supf y + z53 = ? + supf-unique : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y xa xb : Ordinal} → (ay : odef A y) → (xa o≤ xb ) → (za : ZChain A f mf ay xa ) (zb : ZChain A f mf ay xb ) @@ -1484,7 +1467,11 @@ fc1m : FClosure A f (ZChain.supf (pzc (ob<x lim m<x)) u) w fc1m = fc1 fc2 : FClosure A f (supf1 u) w - fc2 = ? + fc2 = subst (λ k → FClosure A f k w) (trans (sym (zeq _ _ zc57 (o<→≤ <-osuc))) (sym (sf1=sf (ordtrans≤-< u<x m<x))) ) fc1 where + zc57 : osuc u o≤ osuc m + zc57 = osucc u<x + fc1a : FClosure A f (ZChain.supf (pzc (ob<x lim a<x)) a) w + fc1a = fc ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a (ordtrans<-≤ a<b b≤x)) ... | tri> ¬a ¬b c = ⊥-elim ( ¬a (ordtrans<-≤ a<b b≤x))