Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1302:c97660e19535
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 05 Jun 2023 14:50:02 +0900 |
parents | 9e26c9abfafb |
children | 66a6804d867b |
files | src/bijection.agda |
diffstat | 1 files changed, 58 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Mon Jun 05 11:33:27 2023 +0900 +++ b/src/bijection.agda Mon Jun 05 14:50:02 2023 +0900 @@ -1,5 +1,8 @@ +{-# OPTIONS --allow-unsolved-metas #-} + module bijection where + open import Level renaming ( zero to Zero ; suc to Suc ) open import Data.Nat open import Data.Maybe @@ -471,3 +474,58 @@ lb07 : (x : List Bool) → pred (lton1 x ) ≡ suc n → lb+1 (true ∷ t) ≡ x lb07 x eq1 = lb=b (lb+1 (true ∷ t)) x (trans ( lb02 (true ∷ t) lb03 ) (sym eq1)) + +Bernstein : (A B C D : Set) → Bijection A D → Bijection C D → (f : A → B ) → (g : B → C ) → Bijection B D +Bernstein A B C D ad cd f g = ? + +bi-∧ : {A B C D : Set} → Bijection A B → Bijection C D → Bijection (A ∧ C) (B ∧ D) +bi-∧ {A} {B} {C} {D} ab cd = record { + fun← = λ x → ⟪ fun← ab (proj1 x) , fun← cd (proj2 x) ⟫ + ; fun→ = λ n → ⟪ fun→ ab (proj1 n) , fun→ cd (proj2 n) ⟫ + ; fiso← = lem0 + ; fiso→ = lem1 + } where + open Bijection + lem0 : (x : A ∧ C) → ⟪ fun← ab (fun→ ab (proj1 x)) , fun← cd (fun→ cd (proj2 x)) ⟫ ≡ x + lem0 ⟪ x , y ⟫ = cong₂ ⟪_,_⟫ (fiso← ab x) (fiso← cd y) + lem1 : (x : B ∧ D) → ⟪ fun→ ab (fun← ab (proj1 x)) , fun→ cd (fun← cd (proj2 x)) ⟫ ≡ x + lem1 ⟪ x , y ⟫ = cong₂ ⟪_,_⟫ (fiso→ ab x) (fiso→ cd y) + + +LM1 : (A : Set ) → Bijection (List A ) ℕ → Bijection (List A ∧ List Bool) ℕ +LM1 A Ln = bi-trans (List A ∧ List Bool) (ℕ ∧ ℕ) ℕ (bi-∧ Ln (bi-sym _ _ LBℕ) ) (bi-sym _ _ nxn) + +LMℕ : (A : Set ) → Bijection (List A) ℕ → Bijection (List (Maybe A)) ℕ +LMℕ A Ln = Bernstein (List A) (List (Maybe A)) (List A ∧ List Bool) ℕ Ln (LM1 A Ln) f g where + f : List A → List (Maybe A) + f [] = [] + f (x ∷ t) = just x ∷ f t + g : List (Maybe A) → List A ∧ List Bool + g [] = ⟪ [] , [] ⟫ + g (just h ∷ t) = ⟪ h ∷ proj1 (g t) , true ∷ proj2 (g t) ⟫ + g (nothing ∷ t) = ⟪ proj1 (g t) , false ∷ proj2 (g t) ⟫ + +-- open import Data.Fin +-- +--- record LF (n m : ℕ) (lton : List (Fin n) → ℕ ) : Set where +--- field +--- nlist : List Bool +--- isBin : lton nlist ≡ m +--- isUnique : (x : List Bool) → lton x ≡ m → nlist ≡ x +--- +--- lb+1 : {n : ℕ) → List Bool → List Bool +--- lb+1 [] = false ∷ [] +--- lb+1 (false ∷ t) = true ∷ t +--- lb+1 (true ∷ t) = false ∷ lb+1 t +--- +--- lb-1 : {n : ℕ) → List Bool → List Bool +--- lb-1 [] = [] +--- lb-1 (true ∷ t) = false ∷ t +--- lb-1 (false ∷ t) with lb-1 t +--- ... | [] = true ∷ [] +--- ... | x ∷ t1 = true ∷ x ∷ t1 + +--- LBFin : {n : ℕ } → Bijection ℕ ( List (Fin n)) +--- LBFin = ? + +--