Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1252:c99c37121d47
generic filter done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Mar 2023 22:26:00 +0900 (2023-03-15) |
parents | a6416ea475bf |
children | 507f443c97ce |
files | src/generic-filter.agda |
diffstat | 1 files changed, 20 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Wed Mar 15 21:44:42 2023 +0900 +++ b/src/generic-filter.agda Wed Mar 15 22:26:00 2023 +0900 @@ -182,7 +182,7 @@ rgen = Replace (Filter.filter genf) (λ x → P \ x ) field generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Replace (Filter.filter genf) (λ x → P \ x )) ≡ od∅ ) - gfilter1 : {p q : HOD} → rgen ∋ p → q ⊆ p → rgen ∋ q + gfilter1 : {p q : HOD} → rgen ∋ p → q ⊆ p → L ∋ ( P \ q) → rgen ∋ q gfilter2 : {p q : HOD} → (rgen ∋ p ) ∧ (rgen ∋ q) → rgen ∋ (p ∪ q) P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 @@ -358,9 +358,9 @@ gpx→⊆P {p} record { z = z ; az = az ; x=ψz = x=ψz } {x} px with subst (λ k → odef k x ) (trans (cong (*) x=ψz) *iso) px ... | ⟪ Px , npz ⟫ = Px - L∋gpr : {p : HOD } → GPR ∋ p → L ∋ (P \ p) + L∋gpr : {p : HOD } → GPR ∋ p → (L ∋ p) ∧ ( L ∋ (P \ p)) L∋gpr {p} record { z = zp ; az = record { z = z ; az = az ; x=ψz = x=ψzp } ; x=ψz = x=ψz } - = NEG (subst (λ k → odef L k) fd40 (PDN.x∈PP az)) where + = ⟪ subst (λ k → odef L k) fd40 (PDN.x∈PP az) , NEG (subst (λ k → odef L k) fd40 (PDN.x∈PP az)) ⟫ where fd41 : * z ⊆ P fd41 {x} lt = L⊆PP ( PDN.x∈PP az ) _ lt fd40 : z ≡ & p @@ -380,8 +380,9 @@ & (* zp) ≡⟨ cong (&) (sym (L\Lx=x (gpx→⊆P azp) )) ⟩ & (P \ (P \ (* zp) )) ≡⟨ cong (λ k → & ( P \ k)) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) (sym x=ψzp))) ⟩ & (P \ p) ∎ ) azp - gfilter1 : {p q : HOD} → GPR ∋ p → q ⊆ p → GPR ∋ q - gfilter1 {p} {q} record { z = np ; az = record { z = z ; az = pdz ; x=ψz = x=ψznp } ; x=ψz = x=ψz } q⊆p = record { z = _ ; az = gf30 ; x=ψz = ? } where + gfilter1 : {p q : HOD} → GPR ∋ p → q ⊆ p → L ∋ ( P \ q) → GPR ∋ q + gfilter1 {p} {q} record { z = np ; az = record { z = z ; az = pdz ; x=ψz = x=ψznp } ; x=ψz = x=ψz } q⊆p Lpq + = record { z = _ ; az = gf30 ; x=ψz = cong (&) fd42 } where gp = record { z = np ; az = record { z = z ; az = pdz ; x=ψz = x=ψznp } ; x=ψz = x=ψz } open ≡-Reasoning fd41 : * z ⊆ P @@ -396,16 +397,27 @@ & p ∎ ))) q⊆P : q ⊆ P q⊆P {x} lt = L⊆PP ( PDN.x∈PP pdz ) _ (subst (λ k → odef k x) p=*z (q⊆p lt)) + fd42 : q ≡ P \ * (& (P \ q)) + fd42 = trans (sym (L\Lx=x q⊆P )) (cong (λ k → P \ k) (sym *iso) ) gf32 : (P \ p) ⊆ (P \ q) gf32 = proj1 (\-⊆ {P} {q} {p} q⊆P ) q⊆p gf30 : GP ∋ (P \ q ) - gf30 = f1 ? (gpr→gp gp) gf32 + gf30 = f1 Lpq (gpr→gp gp) gf32 gfilter2 : {p q : HOD} → (GPR ∋ p) ∧ (GPR ∋ q) → Replace GP (_\_ P) ∋ (p ∪ q) gfilter2 {p} {q} ⟪ gp , gq ⟫ - = record { z = _ ; az = gf31 ; x=ψz = cong (&) ? } where + = record { z = _ ; az = gf31 ; x=ψz = cong (&) gf32 } where open ≡-Reasoning gf31 : GP ∋ ( (P \ p ) ∩ (P \ q ) ) - gf31 = f2 (gpr→gp gp) (gpr→gp gq) (CAP (L∋gpr gp) (L∋gpr gq) ) + gf31 = f2 (gpr→gp gp) (gpr→gp gq) (CAP (proj2 (L∋gpr gp)) (proj2 (L∋gpr gq)) ) + gf33 : (p ∪ q) ⊆ P + gf33 {x} (case1 px) = L⊆PP (proj1 (L∋gpr gp)) _ (subst (λ k → odef k x) (sym *iso) px ) + gf33 {x} (case2 qx) = L⊆PP (proj1 (L∋gpr gq)) _ (subst (λ k → odef k x) (sym *iso) qx ) + gf32 : (p ∪ q) ≡ (P \ * (& ((P \ p) ∩ (P \ q)))) + gf32 = begin + p ∪ q ≡⟨ sym ( L\Lx=x gf33 ) ⟩ + P \ (P \ (p ∪ q)) ≡⟨ cong (λ k → P \ k) (sym (gf02 {P} {p}{q} ) ) ⟩ + P \ ((P \ p) ∩ (P \ q)) ≡⟨ cong (λ k → P \ k) (sym *iso) ⟩ + P \ * (& ((P \ p) ∩ (P \ q))) ∎ open GenericFilter open Filter