Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1410:cc76e2b1f3b5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Jun 2023 11:30:04 +0900 |
parents | 1e2c77c1227d |
children | e5192c07777f |
files | src/cardinal.agda |
diffstat | 1 files changed, 15 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Fri Jun 30 10:58:06 2023 +0900 +++ b/src/cardinal.agda Fri Jun 30 11:30:04 2023 +0900 @@ -338,13 +338,21 @@ be60 = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ be72 : (x : Ordinal) (bx : odef (* b) x) → h (be71 x bx) ≡ x - be72 x bx with ODC.∋-p O UC (* (h⁻¹ bx)) - be72 x bx | yes cn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) - be72 x bx | yes cn | case1 record { y = y ; ay = ay ; x=fy = x=fy } with CN.i (subst (λ k → CN k) &iso cn) | CN.gfix (subst (λ k → CN k) &iso cn) - ... | 0 | a-g ax ¬ib = ? - ... | suc i | next-gf ix t = ? - be72 x bx | yes cn | case2 nimg = ? - be72 x bx | no ncn = ? + be72 x bx = ? where + be73 : (cn : odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) → odef (* a) (Uf x (subst (λ k → odef k x) (sym *iso) cn)) + be73 cn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) + ... | case1 img = be03 (subst (λ k → odef k x) (sym *iso) cn) where + be03 : (cn : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x) → odef (* a) (Uf x cn ) + be03 cn with subst (λ k → odef k x ) *iso cn + ... | record { y = y ; ay = ay ; x=fy = x=fy } = UC⊆a ay + ... | case2 nimg = ⊥-elim ( nimg cn) + be60 : (ncn : ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) → odef (* b \ * (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x + be60 ncn = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ + be74 : (ncn : ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) → odef (* a) (i→ be11 x (subst (λ k → odef k x ) (sym *iso) (be60 ncn) )) + be74 ncn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) + ... | case1 img = ⊥-elim ( ncn img ) + ... | case2 nimg = proj1 (subst₂ (λ j k → odef j k ) *iso refl (iB be11 x (subst (λ k → odef k x) (sym *iso) (be60 ncn)) )) + _c<_ : ( A B : HOD ) → Set n A c< B = ¬ ( Injection (& A) (& B) )