Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1163:cd54ee498249
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 21 Jan 2023 09:02:52 +0900 |
parents | 0a6040d914f8 |
children | 5e065f0a7ba2 |
files | src/Topology.agda |
diffstat | 1 files changed, 37 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Jan 21 01:52:19 2023 +0900 +++ b/src/Topology.agda Sat Jan 21 09:02:52 2023 +0900 @@ -66,6 +66,8 @@ open Topology +-- Closure ( Intersection of Closed Set which include A ) + Cl : {L : HOD} → (top : Topology L) → (A : HOD) → HOD Cl {L} top A = record { od = record { def = λ x → odef L x ∧ ( (c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x ) } ; odmax = & L ; <odmax = odef∧< } @@ -75,9 +77,11 @@ → subst (λ k → odef k x) *iso ((proj2 ic) (& L) (CS∋L top) (subst (λ k → L ⊆ k) (sym *iso) ( λ x → x))) ; eq← = λ {x} lx → ⟪ lx , ( λ c cs l⊆c → l⊆c lx) ⟫ } ) +-- Closure is Closed Set + CS∋Cl : {L : HOD} → (top : Topology L) → (A : HOD) → CS top ∋ Cl top A CS∋Cl {L} top A = subst (λ k → CS top ∋ k) (==→o≡ cc00) (P\OS=CS top UOCl-is-OS) where - OCl : HOD + OCl : HOD -- set of open set which it not contains A OCl = record { od = record { def = λ o → odef (OS top) o ∧ ( A ⊆ (L \ * o) ) } ; odmax = & (OS top) ; <odmax = odef∧< } OCl⊆OS : OCl ⊆ OS top OCl⊆OS ox = proj1 ox @@ -100,9 +104,9 @@ begin * c ≡⟨ sym ( L\Lx=x cc08 ) ⟩ L \ (L \ * c) ≡⟨ cong (λ k → L \ k ) (sym *iso) ⟩ L \ * (& (L \ * c)) ∎ ) ( ac az ) where open ≡-Reasoning - -- ksubst ( λ k → A ⊆ ( L \ k )) *iso (subst (λ k → A ⊆ k ) (L\Lx=x ? ) (ac az) ) cc03 : {x : Ordinal} → odef L x ∧ ((c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x) → odef (L \ Union OCl) x cc03 {x} ⟪ Lx , ccx ⟫ = ⟪ Lx , cc04 ⟫ where + -- if x is in Cl A, it is in some c : CS, OCl says it is not , i.e. L \ o ∋ x, so it is in (L \ Union OCl) x cc04 : ¬ odef (Union OCl) x cc04 record { owner = o ; ao = ⟪ oo , A⊆L-o ⟫ ; ox = ox } = proj2 ( subst (λ k → odef k x) *iso cc05) ox where cc05 : odef (* (& (L \ * o))) x @@ -479,7 +483,13 @@ UFLP→FIP : {P : HOD} (TP : Topology P) → ( {L : HOD} (LP : L ⊆ Power P ) → (F : Filter {L} {P} LP ) (UF : ultra-filter F ) → UFLP TP LP F UF ) → FIP TP -UFLP→FIP {P} TP uflp = record { limit = uf00 ; is-limit = {!!} } where +UFLP→FIP {P} TP uflp with trio< (& P) o∅ +... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) +... | tri≈ ¬a b ¬c = record { limit = ? ; is-limit = {!!} } where + -- P is empty + fip02 : {x : Ordinal } → ¬ odef P x + fip02 {x} Px = ⊥-elim ( o<¬≡ (sym b) (∈∅< Px) ) +... | tri> ¬a ¬b 0<P = record { limit = uf00 ; is-limit = {!!} } where fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {u x : Ordinal} → * u ⊆ * X → Subbase (* u) x → o∅ o< x N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD @@ -534,6 +544,30 @@ ufl00 : {v : Ordinal} → Neighbor TP (FIP.limit fip ? ?) v → filter F ⊆ * v ufl00 {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; o⊆u = o⊆u } = ? +FilterProduct : {P Q LP LQ : HOD } + → (LPP : LP ⊆ Power P) (FP : Filter {LP} LPP) + → (LPQ : LQ ⊆ Power Q) (FQ : Filter {LQ} LPQ) + → Filter {ZFP LP LQ} ? +FilterProduct = ? + +FilterProj : {P Q LPQ : HOD } + → ( LPPQ : LPQ ⊆ Power (ZFP P Q)) + → Filter {LPQ} LPPQ + → (Filter {Proj1PP LPQ (Power P) (Power Q)} ?) ∧ (Filter {Proj2PP LPQ (Power P) (Power Q)} ?) +FilterProj = ? + +ProuctLimit→ProjLimit : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) + → ( {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) LPQ F UF ) + → ( {L : HOD} → (LP : L ⊆ Power P) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TP LP F UF) + ∧ ( {L : HOD} → (LP : L ⊆ Power Q) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TQ LP F UF) +ProuctLimit→ProjLimit = ? + +ProjLimit→ProductLimit : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) + → ( {L : HOD} → (LP : L ⊆ Power P) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TP LP F UF) + ∧ ( {L : HOD} → (LP : L ⊆ Power Q) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TQ LP F UF) + → {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) LPQ F UF +ProjLimit→ProductLimit = ? + -- product topology of compact topology is compact Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ)